K-NN 是一种分类或回归机器学习算法,而K-means是一种聚类机器学习算法。 K-NN 是惰性学习者,而 K-Means 是渴望学习者,不需要训练。急切的学习者有一个模型拟合,这意味着一个训练步骤,但一个懒惰的学习者没有训练阶段。 如果所有数据都具有相同的规模,K-NN的性能会好得多,但对于 K-means 则不然。 通俗说...