1. CART算法的认识 Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。 CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的...
日常人们所说的决策树,通常是指CART决策树,甚至是指CART决策树中的分类树 二、CART决策树构建目标 目标是构建一颗二叉树 二叉树指的就是从一个根节点开始,不断一分为二从而得到的树结构 CART决策树的每个非叶子节点都记录一个特征(变量)和阈值,作为节点的判断依据 而在CART决策树的叶子节点,则记录样本类别,它是...
ID3 和 C4.5 虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但是其生成的决策树分支、规模都比较大,CART 算法的二分法可以简化决策树的规模,提高生成决策树的效率。 3.1 思想 CART 包含的基本过程有分裂,剪枝和树选择。 分裂:分裂过程是一个二叉递归划分过程,其输入和预测特征既可以是连续型的也可以是离散型...
要理解CART决策树的整个剪枝过程,关键是明白的含义,对于一颗理想的决策树,我们当然希望预测误差越小越好,树的规模也越小越好,但是两者却不能两全,因为往往预测误差随着树规模的增大而减小,所以单独考虑预测误差变化或者树规模变化都不合适,最好是选择一个衡量标准能够同时考虑到预测...
CART决策树的生成就是递归地构建二叉决策树的过程,对回归树用平方误差最小化准则,对分类树用基尼指数最小化准则,进行特征选择,生成二叉树。 回归决策树(简称回归树)中,采用启发式搜索方法。假设有n个特征,每个特征有Si个取值,遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征j的取值s,使得损失函数最...
1.CART简介 CART是一棵二叉树,每一次分裂会产生两个子节点。CART树分为分类树和回归树。 分类树主要针对目标标量为分类变量,比如预测一个动物是否是哺乳动物。 回归树针对目标变量为连续值的情况,比如预测一个动物的年龄。 如果是分类树,将选择能够最小化分裂后节点GINI
1. CART算法的认识 Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通 常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。 CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支, ...
二、CART决策树 1.分类树 1.1 基尼系数 1.1 特征离散 1.2 特征连续 2.回归树 三、剪枝算法 2021人工智能领域新星创作者,带你从入门到精通,该博客每天更新,逐渐完善机器学习各个知识体系的文章,帮助大家更高效学习。 一、概述 针对于ID3和C4.5只能处理分类的问题,后来有人提出了CART,该模型是由Breima等人在1984年...
本篇接着上一篇决策树详解,CART是英文“classification and regression tree”的缩写,翻译过来是分类与回归树,与前面说到的ID3、C4.5一致,都是决策树生成的一种算法,同样也由特征选择、树的生成以及剪枝组成,既可以用于分类也可以用于回归。CART算法由决策树的生成以及决策树剪枝两部分组成。