类似于数据集的随机选取,随即森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选择最优的特征。这样能使随机森林中的决策树能不同,提升系统的多样性,从而提升分类性能。 组合树示例图 三、GBDT和XGBoost 1.在讲GBDT和XGBoost之前先补充Bagg...
1、传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。 2、传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一...
类似于数据集的随机选取,随即森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选择最优的特征。这样能使随机森林中的决策树能不同,提升系统的多样性,从而提升分类...
3.GBDT使用的决策树都是CART回归树,为什么不用CART分类树呢? 4.为何gbdt可以用负梯度近似残差呢? 5.梯度提升和梯度下降的区别和联系是什么? 6.为什么GBDT需要归一化? 7.GBDT的优点和局限性有哪些? 8.RF(随机森林)与GBDT之间的区别与联系 9.GBDT是如何做分类和回归的 四、XGBoost 1.什么是XGBoost 2.如何...
1、传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。 2、传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一...
机器学习中的重要算法:决策树、随机森林、Adaboost、GBDT、XGBOOST 1. 决策树基础 1.1 决策树简单理解 如果我们想要构建一个用于判断驾驶员驾驶模式的数学模型,可能会影响该模型输出结果的因素有: 驾驶员性别(男生sport模式可能性更高) 天气(恶劣天气驾驶员sport模式可能性较低) ...
随机森林是 Bagging 的一种改进版本,通过构建多个决策树并结合它们的预测结果来提高模型的准确性和稳定性。与 Bagging 不同的是,随机森林在每次分割节点时还会随机选择部分特征进行考虑,从而进一步增加模型的多样性。4.1 随机森林的定义与原理 随机森林的定义:随机森林(Random Forest)是一种基于决策树的集成学习...
列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样(即每次的输入特征不是全部特征),不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。 忽略缺失值:在寻找splitpoint的时候,不会对该特征为missing的样本进行遍历统计,只对该列特征值为non-missing的样本上对应的特征值进行遍历,通...
参数调整:通过网格搜索或随机搜索优化超参数,如最大深度、最小样本数等 集成方法:结合多个决策树(如随机森林、梯度提升树)来提高模型性能 1.4 决策树的优缺点 优点: 直观简单,易于理解和解释 适用于数值型和类别型数据 可以处理多输出问题 缺点: 容易过拟合,尤其是深树 ...
列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样(即每次的输入特征不是全部特征),不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。 忽略缺失值:在寻找splitpoint的时候,不会对该特征为missing的样本进行遍历统计,只对该列特征值为non-missing的样本上对应的特征值进行遍历,通...