决策树分为两大类:分类树和回归树,前者用于分类标签值,后者用于预测连续值,常用算法有ID3,C4.5,CART等 2.2 决策树构建过程(重点) 决策树算法的重点就是决策树的构造;决策树的构造就是进行属性选择度量,确定各个特征属性之间的拓扑结构(树结构);构建决策树的关键步骤就是分裂属性,分裂属性是指在某个节点按照某一类...
决策树分类 (Decision Trees Classifier) 算法是一种模仿人类决策过程的监督学习算法,它通过学习简单的决策规则来预测数据的类别。决策树通过递归地将特征空间分割成更小的区域,每个区域对应一个决策结果。 算法原理: 信息增益:决策树在每个节点上选择最佳的特征进行分割,通常基于信息增益或基尼不纯度。信息增益衡量了特征...
决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。分类树(决策树)是一种十分常用的分类方法。它是一种监督学习,所谓监督学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器...
决策树(Decision tree)是基于已知各种情况(特征取值)的基础上,通过构建树型决策结构来进行分析的一种方式,是常用的有监督的分类算法。决策树算法是机器学习中的一种经典算法,它通过一系列的规则对数据进行分类或回归分析。其核心思想是将数据集划分为更小的子集,从而形成一个树状结构,使得数据分析和预测变得...
决策树算法借助于树的分支结构实现分类。下图是一个决策树的示例,树的内部结点表示对某个属性的判断,该结点的分支是对应的判断结果;叶子结点代表一个类标。 上表是一个预测一个人是否会购买购买电脑的决策树,利用这棵树,我们可以对新记录进行分类,从根节点(年龄)开始,如果某个人的年龄为中年,我们就直接判断这个人...
决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用。 2.算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: ...
1、Hunt算法 Hunt算法是许多决策树算法的基础,包括ID3、C4.5、CART。 Hunt算法步骤: (1)如果Dt中所有数据都属于同一个类yt,则t是叶结点,用yt标记。 (2)如果Dt中包含属于多个类的数据,则选择一个属性,将数据划分为较小子集。创建子女结点,将数据按属性放入子女结点中,然后递归调用该算法。
决策树分类 (Decision Trees Classifier) 算法是一种模仿人类决策过程的监督学习算法,它通过学习简单的决策规则来预测数据的类别。决策树通过递归地将特征空间分割成更小的区域,每个区域对应一个决策结果。 算法原理: 信息增益:决策树在每个节点上选择最佳的特征进行分割,通常基于信息增益或基尼不纯度。信息增益衡量了特征...