图1 具有高功率因数的单级AC-DC拓扑结构3. 工作原理与状态分析 在一个完整的开关周期中,我们可以将这个单极AC-DC转换器分为8个工作状态(包括死区时间)。为加深理解,我们将逐个分析这些工作状态。图2:工作状态1(t0-t1)状态1(t0-t1):如图2所示,蓝框圈出的部分不参与该工作状态,彩色箭头表示电流的流动...
在本文中,我们提出了一种基于单电感结构的单级AC-DC拓扑结构,具备PFC和LLC功能。该拓扑结构保留了传统LLC谐振转换器的零电压开关(ZVS)优势,同时实现了高功率因数性能。 1.背景 在AC-DCSMPS应用中,桥式整流器被用于将交流输入转换为直流总线电压,并为第二级的隔离DC-DC转换器供电。其中,电流与输入电压的不匹配会...
Q1和Q2的ZVS导通特性如图14和15所示,当MOS的VDS谐振达到0时,栅极导通,ZVS实现,ZVS的行为与LLC拓扑结构类似。 演示功能验证为了验证该工作原理在实际案例中的有效性,构建了一个基于300W LLC演示板的高功率因数单级AC-DC转换器。其规格如下:输入电压180Vac,输...
在本文中,我们提出了一种基于单电感结构的单级AC-DC拓扑结构,具备PFC和LLC功能。该拓扑结构保留了传统LLC谐振转换器的零电压开关(ZVS)优势,同时实现了高功率因数性能。 背景 在AC-DC SMPS应用中,桥式整流器被用于将交流输入转换为直流总线电压,并为第二级的隔离DC-DC转换器供电。其中,电流与输入电压的不匹配会给...
图1 具有高功率因数的单级AC-DC拓扑结构 1.工作原理与状态分析 在一个完整的开关周期中,我们可以将这个单极AC-DC转换器分为8个工作状态(包括死区时间)。为加深理解,我们将逐个分析这些工作状态。 图2:工作状态1(t0-t1) 状态1(t0-t1):如图2所示,蓝框圈出的部分不参与该工作状态,彩色箭头表示电流的流动方向,...
在传统AC-DC SMPS拓扑结构中,功率因数性能较差,谐波也较大,为了改善这两个指标,通常需要采用PFC电路,结果将会导致系统效率和可靠性的降低。本文提出了一种基于单电感结构的单级AC-DC拓扑结构,具备PFC和LLC双功能,从而既保留了传统LLC谐振转换器的零电压开关优势,又实现了功率因数高性能。
摘要:在AC-DC SMPS应用中,通常会在输入级使用功率桥式整流器,将交流电压转换为单向的直流电压。在这种拓扑结构中,还会使用大容量电容器作为纹波滤波器,来稳定总线电压,这会导致功率因数性能较差,并将谐波污染反馈到电网。为了改善功率因数和谐波电流,通常需要使用PFC电路。但额外增加一个功率级意味着会降低系统效率和可...
单级AC-DC拓扑结构 在本文中,我们提出了一种整合了PFC功能的单电感结构LLC谐振拓扑结构,如图1所示。这个拓扑结构由升压电路和半桥LLC电路组成,二者使用同一对开关MOS Q1和Q2。L1是升压电路的主电感。当升压电路的MOSFET Q1和Q2开始交替开关时,L1可以平滑输入电流、减少相位失配、提高PF值,同时实现LLC谐振转换。一次侧...
摘要:在AC-DC SMPS应用中,通常会在输入级使用功率桥式整流器,将交流电压转换为单向的直流电压。在这种拓扑结构中,还会使用大容量电容器作为纹波滤波器,来稳定总线电压,这会导致功率因数性能较差,并将谐波污染反馈到电网。为了改善功率因数和谐波电流,通常需要使用PFC电路。但额外增加一个功率级意味着会降低系统效率和可...