特征提取:卷积层能够提取输入数据的局部特征,如图像的边缘、线条、角等低级特征,并通过多层网络迭代提取...
卷积层:提取特征。“不全连接,参数共享”的特点大大降低了网络参数,保证了网络的稀疏性,防止过拟合。之所以可以“参数共享”,是因为样本存在局部相关的特性。池化层:有MaxPool和AveragePool等。其中MaxPool应用广泛。因为经过MaxPool可以减小卷积核的尺寸,同时又可以保留相应特征,所以主要用来降维。全...
23 经典卷积神经网络 LeNet【动手学深度学习v2】
卷积层:提取特征。 池化层:减小卷积核的尺寸,用来降维。 全连接层:实现分类(Classification),在很多分类问题需要通过softmax层进行输出 https://www.zhihu.com/question/276307619/answer/387253014 深入理解卷积层,全连接层的作用意义 - 程序员大本营...