全基因组选择(Genomic Selection,GS)基于覆盖全基因组的高密度分子标记,通过构建预测模型来进行育种值(Genomic Estimated Breeding Value, GEBV)的估算,利用基因组水平的遗传信息能对个体进行更加准确的遗传评估,以加速实现早期个体的预测和选择。 技术路线
全基因组选择(Genomic Selection,简称GS)这一概念由挪威生命科学大学的Theo Meuwissen 教授于2001年提出。它是一种利用覆盖全基因组的高密度分子标记进行选择育种的方法,可通过构建预测模型,根据基因组估计育种值(Genomic Estimated Breeding Value, GEBV)进行早期个体的预测和选择,从而缩短世代间隔,加快育种进程,...
全基因组选择(Genomic selection, GS)是一种利用覆盖全基因组的高密度标记进行选择育种的新方法,可通过早期选择缩短世代间隔,提高育种值(Genomic Estimated Breeding Value,GEBV)估计准确性等加快遗传进展,尤其对低遗传力、难测定的复杂性状具有较好的预测效果,真正实现了基因组技术指导育种实践。 原理 常规育种手段主要...
基因组选择(Genomic Selection, GS), 利用覆盖全基因组的高密度分子遗传标记进行的标记辅助选择. 表型选择, 这对于遗传力高的性状选择有效, 即表型可以遗传比例较大的性状, 比如植物里面千粒重, 比如动物里面的初生重等. EBV selection, 应用系谱的动物模型 Marker assisted selection(MAS), 分子标记辅助选择, 对于有...
全基因组选择(Genomic selection, GS)是⼀种利⽤覆盖全基因组的⾼密度标记进⾏选择育种的新⽅法,可通过早期选择缩短世代间隔,提⾼育种值(Genomic Estimated Breeding Value, GEBV)估计准确性等加快遗传进展,尤其对低遗传⼒、难测定的复杂性状具有较好的预测效果,真正实现了基因组技术指导育种实践。原...
全基因组选择(Genomic Selection,简称GS)这一概念由挪威生命科学大学的Theo Meuwissen 教授于2001年提出。它是一种利用覆盖全基因组的高密度分子标记进行选择育种的方法,可通过构建预测模型,根据基因组估计育种值(Genomic Estimated Breeding Value, GEBV)进行早期个体的预测和选择,从而缩短世代间隔,加快育种进程,节约大量...
全基因组选择(Genomic Selection,简称GS)这一概念由挪威生命科学大学的Theo Meuwissen 教授于2001年提出。它是一种利用覆盖全基因组的高密度分子标记进行选择育种的方法,可通过构建预测模型,根据基因组估计育种值(Genomic Estimated Breeding Value, GEBV)进行早期个体的预测和选择,从而缩短世代间隔,加快育种进程,节约大量...
全基因组选择(Genomic Selection,简称GS)这一概念由挪威生命科学大学的Theo Meuwissen 教授于2001年提出。它是一种利用覆盖全基因组的高密度分子标记进行选择育种的方法,可通过构建预测模型,根据基因组估计育种值(Genomic Estimated Breeding Value, GEBV)进行早期个体的预测和选择,从而缩短世代间隔,加快育种进程,节约大量...
全基因组选择(genomic selection,GS)方法利用覆盖全基因组的分子标记和样本的表型数据建立预测模型,以实现个体的遗传评估。全基因组选择(genomic selection,GS)育种是根据训练群体全基因组上的分子标记基因型和表型之间的关联构建遗传模型,进而对基因型已知的待选群体进行育种值估计或表型预测,以实现对育种群体高效和精确...
Meuwissen等[1]在2001年首次提出了基因组选择理论(Genomic selection , GS),即利用具有表型和基因型的个体来预测只具有基因型不具有表型值动植物的基因组育种值(GEBV)。例如,提高奶牛的产奶量一直是奶牛研究者的研究重点,传统育种的方法需要牛生长至成年后,才能进行产奶量的测定,再进行后续的育种进程。如果在...