PLS是偏最小二乘分析,DA是判别分析。再加一个o就是加了一个正交,OPLS-DA就是正交偏最小二乘法判别分析。 当变量数量远大于样品数量时(行数小于列数), PLS或 PLS-DA模型容易过拟合,但是PCA效果也不好。但是加入正交矫正之后数据检出假阳性会降低,所以会更准确。数据处理的时候一般是先做PCA,然后做OPLS-DA。
本实验采用UPLC-MS/MS法测定参麦颗粒中12个麦冬成分的含量,通过偏最小二乘法-判别分析(partial least squares discriminant analysis,PLS-DA),筛选并分析影响不同厂家参麦颗粒中投料用麦冬质量的差异标志物,并运用熵权-TOPSIS法进行综合...
偏最小二乘法判别分析,即我常说的PLS-DA(Partial Least Squares Discriminant Analysis),经常被用来处理分类和判别问题。这种方法和PCA分析方法是比较类似的,区别在于二者是否有监督,一般PCA是无监督的,而PLS-DA是有监督的。 当碰到样本组间差异大而组内差异小的情况,常见的PCA分析方...
偏最小二乘法判别分析是一种用于判别分析的多变量统计分析方法。判别分析是一种根据观察或测量到的若干变量值,来判断研究对象如何分类的常用统计分析方法。其原理是对不同处理样本(如观测样本、对照样本)的特性分别进行训练,产生训练集,并检验训练集的可信度。 例如,肺炎和普通感冒两类患者群体利用最小偏二乘法判别...
Part2稀疏偏最小二乘判别分析(sPLS-DA) sPLS-DA(Sparse PLS discriminant analysis)是PLS-DA的一种特殊情况,同时包含变量选择和分类的过程。sPLS-DA允许变量选择,可以选择数据中最具预测性或判别性的特征,并帮助对样本进行分类。 PLS-DA模型建立在X中的所有基因上,其中许多可能无法提供信息来表征不同的类别。sPLS...
正交偏最小二乘法判别分析(orthogonal partial least-squares discrimination analysis,OPLS-DA)在代谢组学分析中应用较多,利用偏最小二乘回归建立代谢物表达量与样本类别之间的关系模型,同时还可以有效分离样本,预测样品类别。PLS-DA/OPLS-DA建立了代谢物表达量与分组关系之间的模型,PLS-DA/OPLS-DA可以更好地获取组...
在代谢组学分析中经常可以见到主成分分析(PCA)、偏最小二乘判别分析(partial least-squares discrimination analysis,PLS-DA)、正交偏最小二乘判别分析(orthogonal partial least-squares discrimination analysis,OPLS-DA)等分析方法,目的为区分样本差异,或在海量数据中挖掘潜在标志物。PCA是最常见的基于特征分解的降维方...
在线作图丨数据降维方法③——正交偏最小二乘方判别分析(OPLS-DA),程序员大本营,技术文章内容聚合第一站。
51CTO博客已为您找到关于偏最小二乘法判别分析 java的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及偏最小二乘法判别分析 java问答内容。更多偏最小二乘法判别分析 java相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
正交偏最小二乘法判别分析(OPLS-DA)在代谢组学等领域应用广泛。它通过多因变量对多自变量的回归模型,去除自变量中与分类变量无关的数据变异,将分类信息集中在主成分中,简化模型,易于解释。OPLS-DA能建立代谢物表达量与样本类别之间的关系模型,预测样品类别,PCA则无法实现。对于如何在线绘制OPLS-DA图...