线性判别分析(LDA)和偏最小二乘判别分析(PLS-DA)是两种常用的多变量分析方法,用于模式识别和分类问题。它们之间有一些关键的区别: 一、基本原理: 1.LDA: 这种方法的目的是找到一个线性组合的特征,这样不同类别的数据在这个新的维度上尽可能分开。它通过最大化类间差异和最小化类内差异来实现。
PLS-DA是偏最小二乘回归的变体,专用于分类问题。它寻找变量的线性组合以最大化原始变量和响应变量(类别)之间的协方差。二、假设条件:1.LDA:它假设不同类别的数据具有相同的协方差结构,且数据近似服从多元正态分布。2.PLS-DA:相比之下,PLS-DA对数据的分布和协方差结构没有严格的假设。三、适用...