掌握如何调节K-means算法的参数,来控制不同的聚类中心。 案例内容介绍 在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略。 俗话说,“物以类聚,人以群分”,聚类算法其实就是将一些具有相同内在规律或属性的样本划分到一个类...
1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。 2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。 二、算法原理 首先...
聚类是观察式学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。k均值(k-means)算法是一种迭代求解的聚类分析算法,所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高...
k均值(k-means)算法是一种迭代求解的聚类分析算法,所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高,其中每个子集叫做一个簇。 4.1、相异度计算 用通俗的话说,相异度就是两个东西差...
仅仅只是从客户消费金额来分析客户是否流失,有时可能会成为曲解客户的行为。那如何实现对用户的精细化运营,达到最有效的客户召回方式呢?本文详细解析了使用RFM模型和K-means聚类实现更有效的客户分层,感兴趣的童鞋快来看看吧。 01 业务背景 不同的客户具有不同的客户价值,采取有效的方法对客户进行分类,发现客户的内在...
rapid miner是一款用于用于数据分析的好软件,如果我们要对数据进行聚类操作,可以用到K-Means算子,具体要怎么做呢?工具/原料 rapid miner 方法/步骤 1 首先,导入原始数据。将其拖到Process面板里。2 然后在右下角的operator面板里搜索cluster,然后选择下方的K-Means算子,将其拖到Process面板里(连接在第一个源...
k均值(k-means)算法是一种迭代求解的聚类分析算法,所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高,其中每个子集叫做一个簇。
4. 聚类分析通常使用K-Means算法,下列不属于其算法步骤的是 ( ) A. 从数据点集合中随机选择K个点作为初始聚集中心 B. 对其余每个数据点依次判断其与K个中心
正确答案是A,B,C,D。 在使用K-Means聚类算法时,选择适当的K值非常重要,因为它决定了聚类的数量。正确选择K值可以帮助提高聚类的准确性。选择K值通常基于数据的特性,包括数据集的大小、数据的复杂程度、预期的类的数量以及数据的维度。合理的K值应该能够充分揭示数据内在的结构,同时避免过度拟合或者欠拟合的问题。反馈...
int K; //集合个数 int *CenterIndex; //质心索引集合,即属于第几个参考点 double *Center; //质心集合 double *CenterCopy;double *DataSet;double **Cluster;int *Top;/*算法描述:C-Fuzzy均值聚类算法采用的是给定类的个数K,将N个元素(对象)分配到K个类中去使得类内对象之间的相似性最...