在PyTorch中,nn.CrossEntropyLoss 是一个用于多分类问题的交叉熵损失函数。它结合了 softmax 操作和交叉熵损失计算,通常用于训练分类任务。这个损失函数期望输入的 y_pred 是模型的原始输出(即未经过 softmax 转换的 logits),而 y_true 是类标签的形式。 需要注意的是,nn.CrossEntropyLoss 期望的标签是类别索引(...
交叉熵损失函数(cross-entropy) 交叉熵损失函数(cross-entropy loss function),也称为对数损失函数(log loss function),是一种用于衡量一个分类模型预测结果与真实标签之间差异的损失函数。 在二分类问题中,交叉熵损失函数定义如下: L(y, \hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y}) ...
1.3 Cross Entropy Loss Function(交叉熵损失函数) 1.3.1 表达式 (1) 二分类 在二分的情况下,模型最后需要预测的结果只有两种情况,对于每个类别我们的预测得到的概率为 p 和1-p ,此时表达式为(log 的底数是e): L = \frac{1}{N}\sum_{i} L_i = \frac{1}{N}\sum_{i}-[y_i\cdot log(p_i)...
Cross Entropy Loss (交叉熵损失函数) nn.CrossEntropyLoss是PyTorch中用于多分类问题的一种损失函数,特别适用于输出层是softmax激活函数后的分类任务。它结合了softmax函数和交叉熵损失(Cross-Entropy Loss)的操作,简化了模型训练过程中的计算步骤和代码实现。 基本概念: 交叉熵损失(Cross-Entropy Loss)源于信息论中的...
3、 交叉熵损失函数 Cross Entropy Error Function 3.1、表达式 在二分类的情况 模型最后需要预测的结果只有两种情况,对于每个类别我们的预测得到的概率为 和 。此时表达式为: 其中: - y——表示样本的label,正类为1,负类为0 - p——表示样本预测为正的概率 ...
Cross entropy loss function 交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性,在深度学习中,一般用来求目标与预测值之间的差距。 信息论 交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。 1 信息量 信息量和事件发生的概率有关。 可见该函数符合我们对信息量...
pytorch里的cross_entropy,log_softmax,nll_loss最清楚简单的区分。再也不迷糊! 1.首先明白信息论的以下概念: 自信息:I(x)代表信息的多少 香农熵H(X):代表一个分布下自信息的期望,也就是自信息的均值。 交叉熵/cross_entropy/H(P,Q): 注意:上图中的DL(P||Q)指的是KL散度,DEEP LEARNING中模糊了交叉熵...
主要记一下CrossEntropyLoss()函数内部运行原理,主要说一下内部参数redcution="mean"时的操作,reduction="sum"就是将对应加起来,关于函数的定义什么官网了解。# 原理# CrossEntropyLoss()函数主要是三部分:Softmax->Log->NNLLoss,NNLLoss操作主要是对预测结果求并取平均值,然后取负,详细看下面例子# ...
交叉熵损失函数(CrossEntropyLoss)是一种用于分类问题的损失函数,它衡量的是模型预测的概率分布与真实标签的概率分布之间的差异。在二分类或多分类问题中,交叉熵损失函数通过计算预测概率与真实标签之间的“距离”来指导模型的学习过程,使得模型预测更加准确。 2. 交叉熵损失函数在PyTorch中的实现 在PyTorch中,交叉熵损失...
我们都知道损失函数有很多种:均方误差(MSE)、SVM的合页损失(hinge loss)、交叉熵(cross entropy)。这几天看论文的时候产生了疑问:为啥损失函数很多用的都是交叉熵(cross entropy)?其背后深层的含义是什么?如果换做均方误差(MSE)会怎么样?下面我们一步步来揭开交叉熵的神秘面纱。