下列写法中正确的是( ) A. 直线a,b相交于点n B. 直线AB,CD相交于点M C. 直线ab,cd相交于点M D. 直线AB,CD相交于m
用符号表示下列语句:(1)直线a与b相交于平面A内一点M 直线a、b相交于一点m 这句话对吗, 下列说法正确的是( ) ①直线L,M相交于点N ②直线a,b相交于点M ③直线ab,cd相交于点M ④直线a,b相交于点m ⑤直线AB,CD相交于点M. A.①② B.②③ C.④⑤ D.②⑤ 特别推荐 热点考点 2022年高考真题试...
注意,这里和打断有很大的区别,使用者不能选择第二个打断点的。 对于选择打断点来说,使用者可以根据自己的图形选择来确定,一般可以开启对象捕捉来合理使用,或者使用烈危辅助线来确定点。 11/11 这里可以看到打断于点的效果,就是把一个线段分成2个线段。虽然看上去是一个线段,但是选择目标的时候可以看出其实是2个线...
把点(3,0),B(0,3)代入得, 0=3k+b 3=b ,解得 k=-1 b=3 ,∴直线的解析式为:y=-x+3;(2)把x=1代入y=-x+3得:y=2,则CD=4-2=2,设对称轴x=1与x轴交于点H,S△CAB = 1 2 CD•OH+ 1 2 CD•HA= 1 2 CD•OA= 1 2 ×2×3=3; (3)过点P作PE⊥x轴交线段AB于点...
对于点C和给定的⊙ O,给出如下定义:若⊙ O上存在点B,使点C绕点B旋转90°的对应点A在⊙ O上,此时△ ABC是以点B为直角顶点的等腰直角三角形,则称点C为⊙ O的
【题目】如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F,下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值.其中结论正确的有( ) A. 4个B. 1个C. 2个D. 3个...
(2)如图2,∠AEF与∠EFC的角平分线相交于点P,直线EP与直线CD交于点G,过点G做EG的垂线,交直线MN于点H.求证:PF∥GH; (3)如图3,在(2)的条件下,连接PH,K是GH上一点,且∠PHK=∠HPK,作∠EPK的平分线交直线MN于点Q.问∠HPQ的大小是否发生变化?若不变,请求出∠HPQ的度数;若变化,请说明理由. ...
所以a(-1,0),b(3,0)再求抛物线y=-x^2+2x+3与y轴相交的c点 令x=0, 则y=3 所以c(0,3)再求抛物线y=-x^2+2x+3顶点d y=-x^2+2x+3=-(x-1)^2+4 得到d(1,4)对称轴x=1 2.(1)求直线bc方程 其斜率k=(3-0)/(0-3)=-1 ① 得(y-3)/(x-0)=-1 化简得 直线bc...
火车为生命临停 不应止于点赞 5岁的男童在火车上突发高烧昏迷,为了挽救孩子的生命,火车在原本没有停车计划的邢台站临时停车5分钟,为孩子赢得了宝贵的抢救时间。这样一则火车为生命让行的消息,引发无数网友点赞。(据《北京晚报》)火车能够为生命临停,体现了生命至上的原则。诚如网友点赞道“好温暖,这才是...
如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F. (1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值. 在RT三角形ABC中,∠ABC=90°,以AB为直径的圆O交AC于点B.过D作DE‖AB交圆O于点E,点F在BC延长线上且FE=FB,直线...