1、递归先序遍历二叉树 观察整个先序遍历二叉树的过程会发现,访问每个结点的过程都是相同的,可以用递归的方式实现二叉树的先序遍历。 对于顺序表存储的二叉树,递归实现先序遍历二叉树的 C 语言代码为: void PreOrderTraverse(BiTree T, int p_node) { //根节点的值不为 0,证明二叉树存在 if (T[p_node]...
3.若当前节点无左子树,则访问当前节点的右子树;即考察到一个节点后,即刻输出该节点的值,并继续遍历其左右子树。(根左右) 先序遍历举例 如图所示,采用先序遍历访问这颗二叉树的详细过程为: 1.访问该二叉树的根节点,找到 1; 2.访问节点 1 的左子树,找到节点 2; 3.访问节点 ...
先序遍历的顺序:ABC (先根节点A,在左子树B,然后右子树C); 中序遍历的顺序:BAC (先左子树B,在根节点A,然后右子树C); 后序遍历的顺序:BCA (先左子树B,在右子树C,然后根节点A)。 上图二叉树遍历结果: 代码语言:javascript 复制 先序遍历:ABDFCEGHI中序遍历:BFDACHGIE后序遍历:FDBHIGECA 第一种分析...
前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子树--->根结点---> 右子树 后序遍历:左子树 ---> 右子树---> 根结点 层次遍历:只需按层次遍历即可 例如,求下面二叉树的各种遍历 前序遍历:1 2 4 5 7 8 3 6 中序遍历:4 2 7 5 8 1 3 6 后序遍历:4 7 8 5 2 6 3 1 层...
后续遍历:先遍历左子树,再遍历右子树,最后输出父节点 如图所示的二叉树,它的前中后输出顺序分别就是: 前序:1易大师、2寒冰射手、3盲僧、4盖伦 中序:2寒冰射手、1易大师、3盲僧、4盖伦 后序:2寒冰射手、4盖伦、3盲僧、1易大师 二、代码实现前、中、后序遍历 ...
2.3数据结构中的二叉树: 编辑 编辑 2.4特殊的二叉树: 1满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。 2完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来...
二叉树的遍历 1、先序遍历 先序遍历的顺序是:先根节点,再左节点,再右节点,即根节点->左节点->右节点。 如: 先序遍历的顺序为:0,1,5,2,3,4 2、中序遍历 中序遍历的顺序为,先左节点,再根节点,再右节点,即左节点->根节点->右节点。 还是以下面的二叉树为例: ...
中序遍历(题目见这里)相对前序遍历要复杂一点,因为我们说过,在二叉树的访问中,最先遇到的是根节点,但是在中序遍历中,最先访问的不是根节点,而是左节点。(当然,这里说复杂是针对非递归方法而言的,递归方法都是很简单的。)递归法 无论对于哪种方式,递归的方法总是很容易实现的,也是很符合直觉的。对于...
什么是二叉树的先序遍历、中序遍历和后序遍历?相关知识点: 试题来源: 解析 答案:先序遍历是指按照根节点-左子树-右子树的顺序遍历二叉树;中序遍历是指按照左子树-根节点-右子树的顺序遍历二叉树;后序遍历是指按照左子树-右子树-根节点的顺序遍历二叉树。
解析 先序遍历:若二叉树为空,则退出,否则进行下面操作:访问根结点、先序遍历左子树、先序遍历右子树。 中序遍历:若二叉树为空,则退出,否则进行下面操作:中序遍历左子树、访问根结点、中序遍历右子树。 后序遍历:若二叉树为空,则退出,否则进行下面操作:后序遍历左子树、后序遍历右子树、访问根结点。