sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[...
或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的...
cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)同角三角函数的基本关系式 倒数关系; 商的关系;平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2...
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则锐角三角函数可表示...
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即co...
sin∠C.③(sin∠A)^2+(cos∠A)^2=1.如果为锐角三角形,那么还有有以下式子(钝角时不过是相应cos值取负值)④a^2+b^ -2abcos∠C=c^2 应用实例 比如直角弯管处的接口,如果用两张铁皮制成圆管,并用两棵来垂直相接,那么铁皮的接口处的切线就是它的一部分,只有这样拼接厚才能保证是垂直相接的。
sec(a) = 1/cos(a) 双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα ...
余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 正弦(sin):角α的对边比上斜边 余弦(cos):角α的邻边比上斜边 正切(tan):角α的对边比上邻边 余切(cot):角α的邻边比上对边 正割(sec):角α的斜边比上邻边 余割(csc):角α的...
利用公式\sin(\frac{\pi}{2} -\alpha)=\cos\alpha和\cos(\frac{\pi}{2} -\alpha)=\sin\alpha得出结果。 举个例子:\cos(\frac{37\pi}{2} +\alpha) 原式=\cos(-\frac{37\pi}{2} -\alpha)/*将\alpha变为负值*/ =\cos(-\frac{\pi}{2} -\alpha)/*利用周期性加上9个2\pi*/ =\cos...