模型和TFIDF算法来获得特征项和权重矩阵,再通过多个朴素贝叶斯分类器用Bagging方法集成得到多组分类预测标签,最后通过少数服从多数的投票方式得到最终的分类预测标签.本发明实现较高准确度的文本分类,优化了泛化能力和过拟合问题,提高了短文本分类的准确度... 刘虎,丁明月,赵世栋,... 被引量: 0发表: 2021年 一种...
根据Categorical贝叶斯和Multinomial贝叶斯算法的原理可知,前者只能用于处理类别型取值的特征变量,而后者的初衷也是为了处理包含词频的文本向量表示(尽管从结果上看也适用于类似TFIDF这样的连续型特征)。所谓高斯贝叶斯是指假定样本每个特征维度的条件概率均服从高斯分布,进而再根据贝叶斯公式来计算得到新样本在某个特征分布下其...