上式中的是学习率,我们设其值为0.1。参数更新的计算相对简单,每一层的计算方式都相同,因此本文仅演示第一层隐藏层的参数更新: 3.小结 至此,我们已经完整介绍了BP算法的原理,并使用具体的数值做了计算。在下篇中,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架),敬请期待!有任何疑问...
def accuracy_calculation(actual_label, predicted_label): """计算准确率 :param actual_label: 真实类标 :param predicted_label: 模型预测的类标 :return: 准确率(百分制) """ correct_count = 0 for i in range(len(actual_label)): if actual_label[i] == predicted_label[i]: correct_count +=...
反向传播计算流程 在前向传播的基础上,BP算法通过计算损失函数关于参数的梯度,实现权重与偏置的更新,优化网络性能。损失函数定义与梯度计算 损失函数定义及梯度计算过程 梯度下降算法应用 BP算法原理与计算流程至此阐述完毕。下篇将带领读者亲手实现BP神经网络,解决实际问题。若有疑问,欢迎参与交流群讨论。...
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架)来解决一个具体的问题。 读者在学习的过程中,有...
1. BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出。输出值的值域为,例如的值越接近0,代表该样本是“0”类的可能性越大,反之是“1”类的可能性大。
1. BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出。输出值的值域为,例如的值越接近0,代表...
1.BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是“0”类的可能性越大,反之是“1”类的可能性大...
一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇) 反向传播算法(BackpropagationAlgorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
在load_dataset函数中,我们实现了数据集的读取、数据的归一化处理以及对数据集进行了shuffle操作等,最后函数返回了划分好的训练集和验证集。 实现数据预处理之后,接下来我们开始实现BP算法的关键部分(如果读者对算法原理有不清楚的地方,可以查看"一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)")。首先我们实现神...
在“load_dataset”函数中,我们实现了数据集的读取、数据的归一化处理以及对数据集进行了“shuffle”操作等,最后函数返回了划分好的训练集和验证集。 实现数据预处理之后,接下来我们开始实现BP算法的关键部分(如果读者对算法原理有不清楚的地方,可以查看“一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)”)。首...