为了实现平移不变性,卷积神经网络(CNN)等深度学习模型在卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。 三、什么是卷积? 在卷积神经网络中,卷积操作是指将一个可移动的小窗口(称为数据窗口,如下图绿色矩形)与图像进行逐元素相乘然后相加的操作。这个小窗口其实是一组固定的权重,...
feature_map1(1,1)表示在通过第一个卷积核计算完后得到的feature_map的第一行第一列的值,随着卷积核的窗口不断的滑动,我们可以计算出一个3*3的feature_map1;同理可以计算通过第二个卷积核进行卷积运算后的feature_map2,那么这一层卷积操作就完成了。feature_map尺寸计算公式:[ (原图片尺寸 -卷积核尺寸)/ ...
这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。 在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6...
神经元模型:CNN的核心组成单元是神经元(Neuron),也称作卷积核(Kernel)或滤波器(Filter)。每个神经元通过对输入数据进行卷积操作和非线性激活,提取输入数据的特征。 层级结构:CNN由多层神经元组成,包括卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)。卷积层通过局部感受野和权值...
通常,随着网络的层级越深入,你使用的过滤器也会更多,其背后的原理就是我们使用越多的过滤器就意味着会有更多的边缘和特征检测。 卷积层输出的通道数量和卷积计算期间使用的过滤器数量相同。 池化层: 有两种最常用的池化方式——平均池化和最大池化,其中后者用的更多些。在卷积神经网络中,池化层用于降低空间维度,但...
卷积是一种数学操作,它在信号处理、图像处理、机器学习等领域中都有广泛的应用。卷积的基本思想是将两个函数( 或向量)合并成一个新的函数,表示它们之间的相似性和交互作用。 在机器学习中,卷积神经网络(CNN) 是-种基于卷积操作的深度学习模型。CNN 可以用来处理图像、语音、自然语言等各种类型的数据,并且在很多任务...
卷积层(Convolutional Layer) 上文提到我们用传统的三层神经网络需要大量的参数,原因在于每个神经元都和相邻层的神经元相连接,但是思考一下,这种连接方式是必须的吗?全连接层的方式对于图像数据来说似乎显得不这么友好,因为图像本身具有“二维空间特征”,通俗点说就是局部特性。譬如我们看一张猫的图片,可能看到猫的眼镜...
卷积层(Convolutional Layer) 上文提到我们用传统的三层神经网络需要大量的参数,原因在于每个神经元都和相邻层的神经元相连接,但是思考一下,这种连接方式是必须的吗?全连接层的方式对于图像数据来说似乎显得不这么友好,因为图像本身具有“二维空间特征”,通俗点说就是局部特性。譬如我们看一张猫的图片,可能看到猫的眼镜...
卷积层(Convolutional Layer) 上文提到我们用传统的三层神经网络需要大量的参数,原因在于每个神经元都和相邻层的神经元相连接,但是思考一下,这种连接方式是必须的吗?全连接层的方式对于图像数据来说似乎显得不这么友好,因为图像本身具有“二维空间特征”,通俗点说就是局部特性。譬如我们看一张猫的图片,可能看到猫的眼镜...