解析 取z=0下侧为∑1z=3上侧为∑2那么∫∫∑1 xdydz+ydzdx+zdxdy=0 ∫∫∑2 xdydz+ydzdx+zdxdy=3∫∫dxdy=3(9π)=27π且根据高斯公式∫∫∑+∑1+∑2 xdydz+ydzdx+zdxdy=3∫∫∫dV=3(3x9π)=81π所以原积分=81π-0-27π=54π 反馈 收藏 ...
【解析】X区域 D:$$ D : x = 2 , y = 1 , y = x = = \Longrightarrow 1 \leq x \leq 2 , 1 \leq $$ $$ y \leq x $$ $$fʃ D xy dxdy \\ = f ( 1 \rightarrow 2 ) d x \int ( 1 \rightarrow x ) x y d y \\ = f ( 1 \rightarrow 2 ) \left[ x...
Answer to: Find \int \int_G xdxdy. By signing up, you'll get thousands of step-by-step solutions to your homework questions. You can also ask your...
D.I=∫∫f(x,y)dxdy=∫∫f(x,y)dydx. Answer and Explanation: Given: f(x,y)=x3y3 and limits of double integral is: {eq}\displaystyle 0 \leq x \leq 2 , \enspace -1 \leq y \leq...Become a member and unlock all Study Answers Start today. Try it n...
f(x,y)dxdy=f(rsint,rcost)rdrdt 面积微元dxdy本来就等于rdrdt,所以只要把被积函数f(x,y)转化为f(rsint,rcost),就可以在指定面积上就可以积分了。
$$f(x,y)dxdy的被积函数f(x,y)是两个函数 $$ f _ { 1 } $$(x)及$$ f _ { 2 } $$(y)的乘积,即$$ f ( x , y ) = f _ { 1 } ( x ) \cdot f _ { 2 } ( y ) $$,积分区域$$ D = \{ ( x , y ) | a \leq x \leq b , $$$ c \leq y \leq d \...
计算二重积分$\iint_D (x y)dxdy$,其中$D$是由直线$y = x$,$y = 0$,$x = 1$所围成的区域。 答案 解析 null 本题来源 题目:计算二重积分$\iint_D (x y)dxdy$,其中$D$是由直线$y = x$,$y = 0$,$x = 1$所围成的区域。 来源: 考研数学全真模拟试题及答案解析 收藏...
Evaluate, ∫−∞∞∫−∞∞1(x2+1)(y2+1)dxdy. Double Integral: A double integral is used for integrating a function f(x,y) that is in two variables. Integrating a function of two variables is similar to that of a single variable integration. In a...
{eq}\iint_{R}f(x,y)dxdy=\iint_{S}f(g(u,v), h(u,v))\left | J \right |dudv {/eq} Answer and Explanation: We have to evaluate the integral {eq}\int \int y sin(xy)dx dy {/eq}, over the region bounded by the curves {eq}xy=...
The y-coordinate of the top edge is decreased by dy and the y-coordinate of the bottom edge is increased by dy. Examples The following example creates a Rect object, draws the rectangle, inflates the rectangle, and then redraws the rectangle. 复制 VOID Example_InflateDxDy(HDC hdc) { ...