因此在下面的实验中,我使用 beta-VAEs 模型对心电图(ETC)数据和和比特币(BTC)的价格数据进行了分析。该实验的代码在 Github上可以找到。 首先,我使用veta-VAE(一个非常简单的多层神经网络)对PTB诊断数据中的心电图数据进行了建模,该数据包含三类变量:心电图图表,每个人随着时间变化的脉搏数据,以及诊断结果(即是...
因此在下面的实验中,我使用 beta-VAEs 模型对心电图(ETC)数据和和比特币(BTC)的价格数据进行了分析。该实验的代码在 Github上可以找到。 首先,我使用veta-VAE(一个非常简单的多层神经网络)对PTB诊断数据中的心电图数据进行了建模,该数据包含三类变量:心电图图表,每个人随着时间变化的脉搏数据,以及诊断结果(即是...
beta-VAE 可以从输入数据中提取影响变量的因素,提取的因素包括物理运动的方向、对象的大小、颜色和方位等等。在强化学习应用中,该模型可以区分目标和背景,并能够基于已有的训练模型在实际环境中进行零样本学习。 实验过程 我主要研究医疗和金融领域的模型应用,在这些领域的实际问题中,上述模型能够在很大程度上解决模型解释...
因此在下面的实验中,我使用 beta-VAEs 模型对心电图(ETC)数据和和比特币(BTC)的价格数据进行了分析。该实验的代码在 Github上可以找到。 首先,我使用veta-VAE(一个非常简单的多层神经网络)对PTB诊断数据中的心电图数据进行了建模,该数据包含三类变量:心电图图表,每个人随着时间变化的脉搏数据,以及诊断结果(即是...