1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。 2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待...
在多线程环境下,多个线程可能同时访问共享资源,导致竞争条件。Python的threading模块提供了锁机制来解决这一问题。 3.1 使用锁确保线程安全 class Counter: def __init__(self): self.value = 0 self.lock = threading.Lock() def increment(self): with self.lock: temp = self.value time.sleep(0.1) # 模...
GIL的存在是为了保护Python对象的完整性,因为Python的内存管理是非线程安全的。如果没有GIL,当多个线程同时修改同一对象时,可能会导致数据损坏或不一致。 然而,GIL也限制了Python程序的并行性能。由于CPU核心不能同时处理多个线程,所以在计算密集型任务中,使用多线程并不能充分利用多核CPU的优势,反而可能因为频繁地切换线...