zero shot learning 详解 Zero-shot learning(零样本学习)是一种机器学习任务,其中模型需要在没有任何训练数据的情况下对新的类别或任务进行预测。在传统的机器学习中,模型通常需要大量的有标签数据来进行训练,以便能够对未知数据进行预测。然而,在零样本学习中,模型需要仅根据已有的知识和信息来对新的类别或任务进行...
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) agent.run("How much energy did wind turbines produce worldwide in 2022?") ZeroShotAgent继承基类Agent,AgentType为ZERO_SHOT_REACT_DESCRIPTION,Agent的组成如下: agent = llm_chain + output_parser + tool...
为了克服这一限制,Auto-CoT 建议利用 Zero-shot-CoT,通过专门提示 LLM 来生成 CoT 推理路径,从而消除了手动操作。为了提高性能,Auto-CoT 进一步将训练集中的问题划分为不同的聚类,然后选择最接近每个聚类中心的问题,这应该很好地代表训练集中的提问。尽管 Few-shot CoT 可以被视为 ICL 的一种特殊提示情况,但与 ...
CLIP使用大规模的文本-图像配对预训练,并且可以直接迁移到Imagenet上,完全不需要图像标签微调即可实现zero-shot分类。CLIP模型或许会引导CV的发展走向大规模预训练,文本-图像打通的时代。 本期博文内容先从CLIP机理讲起,将详细介绍模型打通文本-图像的预训练方法,并且使用预训练模型迁移实现zero-shot图像分类。内容来自原...
ZSSR-“Zero-Shot” Super-Resolution using Deep Internal Learning论文详解,程序员大本营,技术文章内容聚合第一站。
大语言模型的预训练6:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用 1.思维链定义 背景 在2017-2019 年之间,随着 Transformer 模型的提出,计算资源与大规模语料库不断出现,自然语言处理领域发生了翻天覆地的变化,传统的全监督学习的范式逐渐达到了瓶颈,很难在传统的训...
思维链只能在大语言模型中起作用。 Few-shot CoT是ICL的一种特殊情况。 Zero-shot CoT在prompt中不包括人工标注的任务演示。 CoT使大语言模型更具可解释性,更加可信。 更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
2.2 Zero-shot CoT 与Few-shot CoT 不同,Zero-shot CoT 在 prompt 中不包括人工标注的任务演示。相反,它直接生成推理步骤,然后使用生成的 CoT 来导出答案。其中 LLM 首先由 “Let's think step by step” 提示生成推理步骤,然后由 “Therefore, the answer is” 提示得出最终答案。他们发现,当模型规模超过一...