一、本文介绍 本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的ADown模块来改进我们的Conv模块,其中YOLOv9针对于这个模块并没有介绍,只是在其项目文件中用到了,我将其整理出来用于我们的YOLOv8的项目,经过实验我发现该卷积模块(作为下采样模块)首先可以大幅度降低参数值(v8n大约六十万),...
通过这样的设计,CGNet能够在局部和全局上下文之间建立联系,这对于准确分类图像中的每个像素至关重要。 具体改进方法可访问如下地址 YOLOv8改进 | Conv篇 | 轻量级下采样方法ContextGuided(大幅度涨点),点击此处即可跳转
一、本文介绍 本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块),我们将其用于C2f中组合出一种新的结构,来替换我们网络中的模块可以达到一种轻量化的作用,我将其用于我的数据集上实验,包括多个类别的数据集,其在轻量网络结构的同时,...
简介:YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W) 一、本文介绍 本文给大家带来的改进机制是由我独家研制的,我结合了DualConv的思想并根据PartialConv提出了一种全新的结构CSPPC用来替换网络中的C2f,将其替换我们网络中的C2f参数量后直接下降约百万,计算量GFLOPs降低...
本文探讨了如何利用YOLOv9中最新的GELAN模块改进YOLOv8的C2f结构。GELAN融合了CSPNet和ELAN的优点,通过RepConv技术提升特征提取效率,同时保持单分支推理结构,以保持较高的推理速度。本文提供了两种版本:轻量化版本(参数量减少80万,计算量6.1GFLOPs,效果略逊),适合对参数敏感的用户;高效涨点版本(...
本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架和全局响应归一化(GRN)层。我将其替换YOLOv8的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络
简介:YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB) 一、本文介绍 本文给大家带来的改进机制是2024-1月的最新成果DCNv4,其是DCNv3的升级版本,效果可以说是在目前的卷积中名列前茅了,同时该卷积具有轻量化的效果!一个DCNv4参数量下降越15Wparameters左右,。它主要通过...
简介:YOLOv8改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W) 一、本文介绍 本文给大家带来的改进机制是我结合Dual的思想利用HetConv提出一种全新的结构CSPHet,我们将其用于替换我们的C2f结构,可以将参数降低越75W,GFLOPs降低至6.6GFLOPs,同时本文结构为我独家创新,全网无第二份...
专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 二、原理介绍 动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。以下是关于动态卷积的主要信息和原理: 主要原理: 1. 动态卷积的定义:...
具体改进方法可访问如下地址: YOLOv8改进 | Conv篇 | 利用YOLOv10提出的SCDown魔改YOLOv8进行下采样(附代码 + 结构图 + 添加教程),点击此处即可跳转 (大家如有任何问题,随时通过链接到CSDN我的个人主页私信我咨询,看到都会在第一时间回复大家,知乎可能回复的比较慢)...