在train/box_loss、train/cls_loss和train/obj_loss图中,我们可以看到随着训练次数的增加,损失值稳步下降,这表明模型在优化过程中逐渐提高了对安全帽的识别精度。特别是,在初始的训练阶段,损失值迅速下降,这通常意味着模型在学习关键特征,并快速适应训练数据。 对于验证集的损失值,即val/box_loss、val/cls_loss和v...
obj(Objectness):推测为目标检测loss均值,越小目标检测越准。 cls(Classification):推测为分类loss均值,越小分类越准。 第二个衡量指标:宏观上一般训练结果主要观察精度和召回率波动情况,波动不是很大则训练效果较好;如果训练比较好的话图上呈现的是稳步上升。 10.小感悟 Q1:在学习YOLOv5训练结果分析的过程中突然有...
具体来说,训练集的边界框损失(train/box_loss)和类别损失(train/cls_loss)以及目标函数损失(train/obj_loss)随着训练周期的增加而稳步下降。这表明模型在定位缺陷位置、识别缺陷类别以及预测缺陷存在的可能性方面都取得了进步。同样,验证集上的损失(val/box_loss, val/cls_loss, val/obj_loss)也呈下降趋势,这...
首先,从训练和验证的损失图中可以看出,随着训练进程的推进,train/box_loss、train/cls_loss和train/obj_loss均呈现出下降趋势,这表明模型在学习过程中逐渐拟合训练数据,并且在边界框定位、类别分类和目标检测上的表现都在不断改进。相应的,验证损失val/box_loss、val/cls_loss和val/obj_loss虽然波动较大,但总体上...
具体来说,train/box_loss、train/cls_loss和train/obj_loss三个图显示了模型对边界框位置、类别分类和目标检测的损失值,都随着训练的进行而减少。这是一个积极的信号,意味着模型在辨识火焰的边界、类别和存在性方面的表现越来越好。 此外,验证损失值虽然初始较高,但随着训练的进行,val/box_loss、val/cls_loss和...
首先,观察训练过程中的盒子损失(train/box_loss),分类损失(train/cls_loss)和目标损失(train/obj_loss),可以看到随着迭代次数的增加,这三者呈现出明显的下降趋势。这表明模型在学习过程中正在改进其预测能力,并在识别和定位目标上变得更加精确。 进一步地,我们注意到验证集上的损失值(val/box_loss, val/cls_loss...
首先,观察训练过程中的盒子损失(train/box_loss),分类损失(train/cls_loss)和目标损失(train/obj_loss),可以看到随着迭代次数的增加,这三者呈现出明显的下降趋势。这表明模型在学习过程中正在改进其预测能力,并在识别和定位目标上变得更加精确。 进一步地,我们注意到验证集上的损失值(val/box_loss, val/cls_loss...
在YOLOv5的训练过程中,训练结果通常包括多个方面的数据和指标,用于评估模型的性能和训练效果。以下是对YOLOv5训练结果的详细分析和解释: 1. 训练过程中的损失曲线 YOLOv5在训练过程中会计算并输出损失值,这些损失值通常包括分类损失、定位损失和置信度损失等。通过绘制损失曲线,可以直观地了解模型在训练过程中的学习情况...
损失函数图像揭示了训练和验证过程中的几个关键指标:box_loss、cls_loss、obj_loss(在图中表述为df1_loss)以及评价指标precision、recall和mAP(mean Average Precision)。在训练过程中,这些损失指标逐渐下降,而评价指标则相应提高,这是模型性能提升的直观体现。
yolov5视频目标检测 搭建yolov4目标检测平台,YOLOV4是YOLOV3的改进版,在YOLOV3的基础上结合了非常多的小Tricks。尽管没有目标检测上革命性的改变,但是YOLOV4依然很好的结合了速度与精度。根据上图也可以看出来,YOLOV4在YOLOV3的基础上,在FPS不下降的情况下,mAP达到了4