YOLOv5 Lite在YOLOv5的基础上进行一系列消融实验,使其更轻(Flops更小,内存占用更低,参数更少),更快(加入shuffle channel,yolov5 head进行通道裁剪,在320的input_size至少能在树莓派4B上的推理速度可以达到10+FPS),更易部署(摘除Focus层和4次slice操作,让模型量化精度下降在可接受范围内)。 1输入端方法 1、Mosa...
4Tengine部署YOLOv5-Lite 依照顺序调用Tengine核心API如下: 1. init_tengine 初始化Tengine,该函数在程序中只要调用一次即可。 2. create_graph 创建Tengine计算图。 3. prerun_graph 预运行,准备计算图推理所需资源。设置大小核,核个数、核亲和性、数据精度都在这里。 structoptions { intnum_thread;//核个数设...
1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组成了Focus层 YOL...
4Tengine部署YOLOv5-Lite 依照顺序调用Tengine核心API如下: 1. init_tengine 初始化Tengine,该函数在程序中只要调用一次即可。 2. create_graph 创建Tengine计算图。 3. prerun_graph 预运行,准备计算图推理所需资源。设置大小核,核个数、核亲和性、数据精度都在这里。 代码语言:javascript 复制 struct options{int...
YOLOv5 Lite在YOLOv5的基础上进行一系列消融实验,使其更轻(Flops更小,内存占用更低,参数更少),更快(加入shuffle channel,yolov5 head进行通道裁剪,在320的input_size至少能在树莓派4B上的推理速度可以达到10+FPS),更易部署(摘除Focus层和4次slice操作,让模型量化精度下降在可接受范围内)。
YOLOv5 Lite在YOLOv5的基础上进行一系列消融实验,使其更轻(Flops更小,内存占用更低,参数更少),更快(加入shuffle channel,yolov5 head进行通道裁剪,在320的input_size至少能在树莓派4B上的推理速度可以达到10+FPS),更易部署(摘除Focus层和4次slice操作,让模型量化精度下降在可接受范围内)。
前言:毕设的一部分,前段时间,在yolov5上进行一系列的消融实验,让他更轻(Flops更小,内存占用更低,参数更少),更快(加入shuffle channel,yolov5 head进行通道裁剪,在320的input_size至少能在树莓派4B上一秒推理10帧),更易部署(摘除Focus层和四次slice操作,让模型量化精度下降在可接受范围内)。
~/data/packages/ncnn/build/tools/ncnnoptimize yolov5-lite.param yolov5-lite.bin yolov5-lite-opt.param yolov5-lite-opt.bin 65536 三、改param文件设置动态尺寸推理 四、匹配ncnn中yolov5.cpp的输出 param中的: yolov5.cpp中的: 五、树莓派上重新编译ncnn并拿来其他服务器上生成的param和bin文件推理 ...
YOLOv5 Lite在YOLOv在5的基础上进行一系列消融实验,使其更轻(Flops更小,内存占用更低,参数更少),更快(加入shuffle channel,yolov5 head切割通道,320input_size至少在树莓派4B推理速度可达10 FPS),更容易部署(摘除)Focus层和4次slice操作,让模型量化精度下降在可接受范围内)。