box_loss全称是bounding box loss,表示边界框损失。它表明AI通过训练和学习之后,对于边界框的预测和标准答案之间的损失。 正常情况下,随着训练的进行,损失是越降越低的。如果它是长期忽高忽低,或者一直不明显收敛,那说明训练存在问题。如果box_loss的损失不断降低,而后持续稳定,则说明训练没有问题,也没有必要再投入...
具体而言,box_loss由两个部分组成:坐标损失和置信度损失。坐标损失用于衡量预测框的位置偏移程度,而置信度损失则用于衡量预测框内是否包含目标物体。 对于坐标损失,yolov5采用了平方根坐标损失(square-root coordinate loss)。这种损失函数能够有效地缓解小目标和大目标之间的比例不平衡问题,并提高模型对小目标的检测效果...
边界框损失(box_loss):该损失用于衡量模型预测的边界框与真实边界框之间的差异,这有助于确保模型能够准确地定位对象。 这些损失函数在训练模型时被组合使用,以优化模型的性能。通过使用这些损失函数,YOLOv5可以准确地识别图像中的对象,并将其定位到图像中的具体位置。 1. 导入需要的包 import oneflow as flow import...
yolov5 box_loss损失函数 Yolov5 box_loss损失函数结构是由三部分构成的,它们是分类损失(classification loss)、平衡损失(balancing loss)和框回归损失(box regression loss)。 1.分类损失(classification loss):将每个矩形框的预测类别和真实类别进行比较,这种损失又称为交叉熵损失(cross-entropy loss)或多类Softmax...
yolov5 box_loss损失函数 Yolov5 Box Loss损失函数是一种用于目标检测的损失函数,它是基于YOLOv5模型的一种改进,旨在提高目标检测的准确性和效率。在本文中,我们将深入探讨Yolov5 Box Loss损失函数的原理和应用。 我们需要了解目标检测的基本原理。目标检测是指在图像或视频中检测出特定目标的位置和大小。在YOLOv5...
box_loss 是边界框回归损失,用于评估预测的边界框与真实边界框之间的差异。 cls_loss 是分类损失,用于评估类别预测的准确性。 dfl_loss 是防御性损失,用于提高模型的泛化能力。从输出结果来看,经过两个训练周期后,模型的边界框损失、分类损失和防御性损失都有所下降,这表明模型在训练过程中学习了如何更好地预测边界...
IoU Loss,其将4个点构成的box看成一个整体进行回归 IoU_loss的损失函数为: IoU_loss缺点: 当预测框和目标框不相交时,IoU(A,B)=0时,不能反映A,B距离的远近,此时损失函数不可导,IoU Loss 无法优化两个框不相交的情况。 假设预测框和目标框的大小都确定,只要两个框的相交值是确定的,其IoU值是相同时,IoU...
原因是传统的regression loss是针对物体框的位置和大小分别计算的(比如),然后再相加起来。这种loss并不...
对不同大小的bbox预测中,相比于大bbox预测偏一点,小box预测偏一点更不能忍受。作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width (主要为了平衡小目标检测预测的偏移) ② IOU误差(很多人不知道 代表什么) 其实这里的 ...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在runs/train目录下找到生成对若干训练过程统计图。