通过这种方式,我们能够在自上而下的路径中显式增加特征金字塔每一层全局表示的空间权重,从而使我们的特征金字塔表示(CFP)能够有效地实现全面且具有判别性的特征表示。 IV. 实验 A. 数据集和评估指标 数据集。在本工作中,我们使用Microsoft Common Objects in Context(MS-COCO)[34]来验证我们提出的CFP(特征融合方法
3. 提高识别的准确性:最后,为了让计算机更准确地识别出照片中的对象,CFP采用了一种特别的计算方法(MLP),这种方法帮助计算机更好地理解照片中的信息,就像提高它的“智商”一样,让它更聪明地识别出各种对象。 CFP就是一种让计算机在查看照片时,能够处理不同大小的对象,同时关注到全局和局部的重要细节,最终更准确地...
与现有的特征金字塔相比,提出的CFP不仅可以捕获全局的长距离依赖关系,还可以实现全面和差异化的特征表示。 如图2所示,CFP主要由以下部分组成:输入图像、用于提取视觉特征金字塔的CNN主干、提出的显式视觉中心(EVC)、提出的全局集中规则(GCR)以及用于目标检测的去解耦head网络(由分类损失、回归损失和分割损失组成)。在图2...
与现有的特征金字塔相比,提出的CFP不仅可以捕获全局的长距离依赖关系,还可以实现全面和差异化的特征表示。 如图2所示,CFP主要由以下部分组成:输入图像、用于提取视觉特征金字塔的CNN主干、提出的显式视觉中心(EVC)、提出的全局集中规则(GCR)以及用于目标检测的去解耦head网络(由分类损失、回归损失和分割损失组成)。在图2...
具体而言,该系统首先使用CFPNet对太阳能电池板图像进行预处理,提取出关键特征。然后,利用EVC-Block结构对特征进行进一步的增强和压缩,以提高检测的准确性和效率。最后,通过YOLO算法进行目标检测,识别出太阳能电池板上的缺陷。 该系统的研究意义主要体现在以下几个方面: ...
具体来说,首先将输入图像送入主干网络(即修改后的CSP v5),以提取五级一特征金字塔X,其中每层特征的空间大小分别为输入图像的1/2,1/4,1/8,1/16,1/32。 基于这个特征金字塔CFP得以实现。提出了一种轻量级MLP架构来捕获的全局长程依赖性,其中标准Transformer编码器的多头自注意力模块被MLP层取代。与基于多头注意...
如图2所示,CFP主要由以下部分组成:输入图像、用于提取视觉特征金字塔的CNN主干、提出的显式视觉中心(EVC)、提出的全局集中规则(GCR)以及用于目标检测的去解耦head网络(由分类损失、回归损失和分割损失组成)。在图2中,EVC和GCR在提取的特征金字塔上实现。
简介:YOLO目标检测专栏探讨了对YOLO框架的创新改进,如中心化特征金字塔(CFP)。CFP引入了空间显式视觉中心方案和全局集中特征规范,通过轻量级MLP与并行视觉中心机制强化特征表示,尤其利于小目标检测。在YOLOv5和YOLOX基础上,CFP实现性能提升。相关代码示例展示了EVCBlock的结构,整合了LVCBlock和LightMLPBlock。更多详情和配置...
CFPNet是一个即插即用的模块,可以有效提升YOLOX和YOLOv5等目标检测模型的性能。以下是关于CFPNet的详细解答:1. CFPNet的核心思想: CFPNet提出了集中式特征金字塔,它基于全局显式集中式规则方案,旨在解决现有特征金字塔方法忽略的层内特征规则和角区域问题。2. CFPNet的关键技术: 显式视觉中心方案:...
如图2所示,CFP主要由以下部分组成:输入图像、用于提取视觉特征金字塔的CNN主干、提出的显式视觉中心(EVC)、提出的全局集中规则(GCR)以及用于目标检测的去解耦head网络(由分类损失、回归损失和分割损失组成)。在图2中,EVC和GCR在提取的特征金字塔上实现。