在xrun中,define用于定义宏,类似于C语言中的宏定义。它可以用来创建常量、函数、或者一段代码片段的别名,从而提高代码的可读性和可维护性。在使用define时,需要注意以下几点: 1. 定义常量:可以使用define来定义常量,例如: `define PI 3.14159`。 这样就定义了一个名为PI的常量,其值为3.14159。在代码中可以直接使...
`ifdefDUMPinitialbegin$display("Dump");$fsdbDumpfile("tb.fsdb");$fsdbDumpvars;end`elseinitialbegin$display("No Dump");end`endif 注意必须要用条件编译,因为vcs命令会用+define+DUMP来传递参数,条件编译fsdb相关函数,而xrun这里不需要。注意,这里面的4个软件,vcs仅支持和verdi配合使用,xrun仅支持和indago...
复制 #ifdefCONFIG_SND_PCM_XRUN_DEBUG#definexrun_debug(substream,mask)\((substream)->pstr->xrun_debug&(mask))#else#definexrun_debug(substream,mask)0#endif 配置好之后重新编译代码,启动系统,如果出现了XRUN,会得到类似这样的打印信息: audiocodec soc@xxxxxxxx:sound@0:XRUN:pcmC0D0p:0 /proc配...
Makefile操作通过`make sim SIM=vcs`开始VCS仿真,完成后执行`make verdi`打开波形。若选择Xrun,`make sim`即可,无需指定SIM,然后`make indago`调试波形。`make help`可查看命令列表,建议自行查看和调整。VCS与VerdiVCS仿真需在TB文件中添加特定代码生成.fsdb文件,条件编译以支持+define+DUMP参数传...
xrun -64bit -sv -access rwc -clean -elaborate-uvmhome xmroot/tools/methodology/UVM/CDNS-1.1d-timescale 1ns/1ps-coverage all -coverage functional+define+UVM_OBJECT_MUST_HAVE_CONSTRUCTOR+incdir+${IIC_AGENT_DIR}+${IIC_AGENT_DIR}/bits+${IIC_AGENT_DIR}/bytes+${IIC_AGENT_DIR}/utils+...
import onnxruntime as ort # define the priority order for the execution providers # prefer CUDA Execution Provider over CPU Execution Provider available_providers = ort.get_available_providers() print(available_providers) providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] ...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
#define __OCR_LITE_H__ #include "opencv2/core.hpp" #include <onnxruntime/core/session/onnxruntime_cxx_api.h> #include <string> #include "OcrStruct.h" #include "DbNet.h" #include "AngleNet.h" #include "CrnnNet.h" class OcrLite { class OcrLiteImpl; class OcrLite{ public: OcrLi...
# define a common unit input_shape = (32, 32, 3) model = MiniModel(input_shape) # Print a Summary of the model model.summary() # Specify the training components model.compile(optimizer=Adam(0.001), loss="categorical_crossentropy", metrics=["accuracy"]) ...
#define ORT_API_VERSION 8 #ifdef __cplusplus extern "C" { #endif // SAL2 Definitions #ifndef _WIN32 #define _In_ #define _In_z_ #define _In_opt_ #define _In_opt_z_ #define _Out_ #define _Outptr_ #define _Out_opt_ #define _Inout_ #define _...