x1的期望和x不一样。1、x1的期望是一个固定值。期望值是该变量输出值的平均数。2、x是一个未知的自变量,是不一定的数值。
不一样。如果X是一个离散的随机变量,输出值为x1,x2,和输出值相应的概率为p1,1/x和x,比如说x是5,1/x就是1/5,相当于5份其中的1份,两者属于反差,并不一样。
计算公式:1、离散型:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:2、连续型:设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值 为随机变量的数学期望,...
“数学期望”主要有两种方法: 只要把分布列表格中的数字 每一列相乘再相加 即可。 如果X是离散型随机...
若X是连续型的,则E(X^2)=(x^2)f(x)在-∞到+∞的定积分。期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于...
期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn 方差的公式:D=(X1-E)的平方*P1+(X2-E)的平方*P2+(X3-E)的平方*P4+. +(Xn-E)的平方*Pn 对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,他的分布列求数学期望和方差)有EX=np DX=np(1-p) ,n为试验次数 p为成功的概率 对于几何分布...
八大常见分布的期望和方差如下:1、0-1分布:E(X)=p,D(X)=p(1-p)。2、二项分布B(n,p):P(X=k)=C(k\n)p^k·(1-p)^(n-k),E(X)=np,D(X)=np(1-p)。3、泊松分布X~P(X=k)=(λ^k/k!)·e^-λ,E(X)=λ,D(X)=λ。4、均匀分布U(a,b):X~f(x)=1/(b-a...
进一步地,我们也可以计算出E(X-1)的值。根据期望的线性性质,E(X-1) = E(X) - E(1) = 1.2 - 1 = 0.2。除了期望之外,方差也是衡量随机变量离散程度的重要指标。方差D(X)定义为E[(X-E(X))^2]。对于随机变量X-1,其方差D(X-1)可以表示为D(X-1) = E[(X-1)^2] - [E...
从定义出发的,x(x-1)的期望等于每一项乘以它概率的求和。所以E(x(x-1))=Σ{[x(x-1)]*P} 概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一...
1、指数分布的期望:E(X)=1/λ。2、指数分布的方差:D(X)=Var(X)=1/λ²。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。常见分布的期望和方差:1、均匀分布,期望是(a+b)/2,方差是(b...