Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). Google Scholar Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013). Article PubMed Central ...
Understanding Neural Models in NLP. arXiv preprint arXiv:1506.01066v2 (2016). [17] Laurens van der Maaten and Geo.rey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, Nov (2008), 2579–2605. [18] Aravindh Mahendran and Andrea Vedaldi. 2016. Visualizing ...
E. Visualizing high-dimensional data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008). MATH Google Scholar Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters. KDD-96 Proc. 226–231 (1996). Heris, S. DBSCAN Clustering ...
Interactive distortion[133] supports the research process data using distortion scale with partial detail. The basic idea of this method is that a part of the fine granularity displayed data is shown in addition to one with a low level of details. The most popular methods are hyperbolic and sp...
Visualizing data using t-sne. J Mach Learn Res. 2008;9(Nov):2579–605. 14. Platzer A. Visualization of snps with t-sne. PLoS ONE. 2013;8(2):56883. https://doi.org/10.1371/journal.pone.0056883. 15. Andrews TS, Hemberg M. Identifying cell populations with scrnaseq. Mol Asp Med....
www.nature.com/scientificreports OPEN received: 28 July 2016 accepted: 04 November 2016 Published: 06 December 2016 Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server Carla Proietti1,*, Martha Zakrzewski1,*,Thomas S. Watkins...
Van Der Maaten, L. & Hinton, G. Visualizing high-dimensional data using t-SNE. journal of machine learning research.J. Mach. Learn. Res.9, 26 (2008). Google Scholar Amir, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of...
the clustering results, we create multi-level graphs that allow users to effortlessly navigate the entire dataset and database, ultimately allowing direct access to individual items. These graphs are constructed using a similarity matrix derived from individual elements or clusters at the lowest level....