U-Net网络非常简单,前半部分(左边)作用是特征提取,后半部分(右边)是上采样。在一些文献中也把这样的结构叫做Encoder-Decoder结构。因为此网络整体结构类似于大写的英文字母U,故得名U-Net。 每个蓝色框对应一个多通道特征图,其中通道数在框顶标。x-y的大小位于框的左下角。灰色框表示复制和裁剪(Concat)的特征图。箭头表示不同的操作。 该
U-Net是原作者参加ISBI Challenge提出的一种分割网络,能够适应很小的训练集(大约30张图)。U-Net与FCN都是很小的分割网络,既没有使用空洞卷积,也没有后接CRF,结构简单。 图9 U-Net网络结构图 整个U-Net网络结构如图9,类似于一个大大的U字母:首先进行Conv+Pooling下采样;然后Deconv反卷积进行上采样,crop之前的...
U-Net是一个基于卷积神经网络(CNN)的端到端图像分割模型,其主要特点是其对称的编码器-解码器结构。编码器负责提取图像特征,而解码器则重建并生成分割后的图像。 01 U-Net的框架 U-Net的结构可以分为两部分:收缩路径(编码器)和扩展路径(解码器)。 收缩路径(编码器):编码器由一系列卷积层、激活函数(如ReLU)和...
U-Net是比较早的使用全卷积网络进行语义分割的算法之一,论文中使用包含压缩路径和扩展路径的对称U形结构在当时非常具有创新性,且一定程度上影响了后面若干个分割网络的设计,该网络的名字也是取自其U形形状。 U-Net的实验是一个比较简单的ISBI cell tracking数据集,由于本身的任务比较简单,U-Net紧紧通过30张图片并辅...
3D U-Net[3]是U-Net的一个简单扩展,应用于三维图像分割,结构如下图所示。相比于U-Net,该网络仅用了三次下采样操作,在每个卷积层后使用了batch normalization,但3D U-Net和U-Net均没有使用dropout。 在2018年MICCAI脑肿瘤分割挑战赛(brats)中[4],德国癌症研究中心的团队使用3D U-Net,仅做了少量的改动,取得...
ResNet 笔者主要主要使用了ResNet及其变体,ResNet中的残差结构有效缓解了梯度消失与梯度爆炸等问题,ResNet网络结构与残差结构如下所示: ResNet网络结构的各层配置如下所示,从50层开始使用了瓶颈残差结构: ResNet_vb、vc、vd结构如下所示: 为什么这样改呢,看到的一个理由:ResNet50中的下采样操作是在残差结构中使用步...
U-Net模型结构 U-Net的命名源自它的结构:如上图所示,它的网络结构可视化的结果很像一个字母U。输入的是原始图像,通过网络结构后得到的是分割后的图像。最特殊的部分是结构的后半部分,该网络结构没有全连接层,只采用了卷积层,每个标准的卷积层后面都紧跟着一个...
本课程B站链接:https://www.bilibili.com/video/BV1Vq4y127fB/ 主要介绍unet的网络结构。详见2015年的论文 unet结构图 【详解】典型的encoder-decoder结构 左边是encoder,也就是提取特征和下采样的部分;右边decoder解码是一
U-Net是一种全卷积神经网络(FCN),由编码器和解码器组成。编码器部分逐渐减少图像的分辨率,同时增加特征图的深度和宽度。解码器部分则逐步恢复图像的分辨率,同时减少特征图的深度和宽度。这种结构使得U-Net能够学习到从粗糙到精细的图像表示。在U-Net中,跳跃连接是一个核心概念。它允许解码器直接访问编码器中的特征...
U²-Net 是为显著性对象检测或 SOD 而设计的。对于那些不知道的人来说,显著性对象检测基本上是检测给定图像中最重要或主要的对象。 U2 -Net 的架构是一个两级嵌套的 U 结构。该设计具有以下优点: 提出残差 U 块 (RSU) 中混合了不同大小的感受野,它能够...