Type-C插头和插座的管脚线序 Type-C连接器中有两个管脚CC1和CC2,他们用于识别连接器的插入方向,以及不同的插入设备。本文介绍CC的基本识别原理。 Type-C插头和插座的管脚线序 Type-C管脚类型归类 DFP、UFP和DRP概念 DFP——Downstream Facing Port,也就是HostUFP——Upstream Facing Port,也就是DeviceDRP——Dua...
CC信号有两根线,CC1和CC2,大部分USB线(不带芯片的线缆)里面只有一根CC线,DFP可根据两根CC线上的电压,判断是否已经插入设备。通过判断哪根CC线上有下拉电阻来判断方向,下图的说明已经非常清晰。 如果CC1引脚检测到有效的Rp/Rd连接(对应的电压),则认为电缆连接未翻转。 如果CC2引脚检测到有效的Rp/Rd连接(对应的电...
3.2.CC1和CC2的下拉电阻是否能共用一个电阻? 4. Type C 版本 5. 16P 与 12P Type C 接口定义 6. 6P Type C 接口定义 1. Type C 接口特点 Type C 是一组对称的连接器,在使用的过程中不需要如同使用 USBA,MinUSB,MicroUSB 那样来辨别接口方向。其次能够承受较高的功率所以可以支持高达 100W 的功率,所...
通常情况下,CC1和CC2信号线需要连接上拉或下拉电阻,以实现正确的信号电平。根据Type-C协议规定,CC1和...
CC信号有两根线,CC1和CC2,大部分USB线(不带芯片的线缆)里面只有一根CC线,DFP可根据两根CC线上的电压,判断是否已经插入设备。通过判断哪根CC线上有下拉电阻来判断方向,下图的说明已经非常清晰。 如果CC1引脚检测到有效的Rp/Rd连接(对应的电压),则认为电缆连接未翻转。 如果CC2引脚检测到有效的Rp/Rd连接(对应的电...
UFP的CC1和CC2管脚都要有一个下拉电阻Rd到GND(或者使用电压钳位)。Rd的处理方式如下表。 注意,最后一列的电流源连接至的电压,是指3.1节中表格的最后一列电流源的上拉电压。 结合这个表格,和3.1节的表格,我们把每种可能的上下拉范围都计算出了最终形成的电压范围,如下表。
Type C 连接器中的 GND 引脚通常是相互连接的。 3.CC 引脚(Configuration Channel): CC1 和 CC2 引脚用于设备之间的通信。这两个引脚上分别接有 5.1k 欧姆的电阻,用于标识设备的角色和功能。 如果连接器被连接到设备(如手机、电脑),则 CC 引脚上的电阻配置会告诉设备连接器的角色(Source 或 Sink)以及支持的...
CC检测对于高速USB3.0或USB3.1至关重要,因为高数据速率需要保证信号路径阻抗的一致性,以避免数据传输质量受损。在Type-C中,通过检测CC1和CC2的电阻变化,判断设备的插入状态和供电能力。例如,DFP通过检测CC线上的电阻变化确定是否已连接设备和方向。DFP需要在CC1和CC2上设置上拉电阻Rp,而UFP则需要...
如表格1所示,DFP的CC1和CC2是必须通过RP上拉至5V或者3.3V,或者也可以使用电流源上拉至1.7V~5.5V。 然后是UFP的下拉电阻Rd(USB-IF的标准文件截图) 中文如下表格2所示: 表格2 从表格2中可以看得出来CC1和CC2都下拉一个5.1K的电阻到GND。 Type-C存在两个电流模式分别是1.5A和3A,如下表格3所示: ...
图4.CC1和CC2引脚 DFP通过Rp电阻上拉CC1和CC2引脚,但UFP通过Rd将它们拉低。如果没有连接电缆,则源在CC1和CC2引脚处看到逻辑高电平。连接USB Type-C电缆可创建从5V电源到地的电流路径。 由于USB Type-C电缆内只有一根CC线,因此只形成一条电流路径。例如,在图4的上图中,DFP的CC1引脚连接到UFP的CC1引脚。因此...