We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
如果使用了梯度检查点,则默认为 False,否则为 True。 ddp_bucket_cap_mb (int, optional)— 在使用分布式训练时,传递给 DistributedDataParallel 的bucket_cap_mb 标志的值。 ddp_broadcast_buffers (bool, optional)— 在使用分布式训练时,传递给 DistributedDataParallel 的broadcast_buffers 标志的值。如果使用了...
( repo_id:struse_temp_dir:Optional=Nonecommit_message:Optional=Noneprivate:Optional=Nonetoken:Union=Nonemax_shard_size:Union='5GB'create_pr:bool=Falsesafe_serialization:bool=Truerevision:str=Nonecommit_description:str=Nonetags:Optional=None**deprecated_kwargs ) 参数 repo_id(str) — 要将处理器推送...
( save_log_history: bool = True sync_checkpoints: bool = True ) 参数 save_log_history (bool, 可选, 默认为 True)— 当设置为 True 时,训练日志将保存为 Flyte Deck。 sync_checkpoints (bool, 可选, 默认为 True)— 当设置为 True 时,检查点将与 Flyte 同步,并可用于在中断的情况下恢复训练。
COMET_LOG_ASSETS(str,可选,默认为TRUE): 是否将训练资产(tf 事件日志、检查点等)记录到 Comet。可以是TRUE或FALSE。 有关环境中可配置项目的详细信息,请参阅此处。 class transformers.DefaultFlowCallback < source > ( ) 处理训练循环的默认流程,包括日志、评估和检查点的 TrainerCallback。
Optional = None ddp_broadcast_buffers: Optional = None dataloader_pin_memory: bool = True dataloader_persistent_workers: bool = False skip_memory_metrics: bool = True use_legacy_prediction_loop: bool = False push_to_hub: bool = False resume_from_checkpoint: Optional = None hub_model_id: ...
ddp_broadcast_buffers (bool, optional)— 在使用分布式训练时,传递给 DistributedDataParallel 的标志 broadcast_buffers 的值。如果使用了梯度检查点,则默认为 False,否则为 True。 dataloader_pin_memory (bool, optional, defaults to True)— 是否要在数据加载器中固定内存。默认为 True。 dataloader_persistent_wo...
Exposeoffload_buffersparameter ofacceleratetoPreTrainedModel.from_pretrainedmethod by @notsyncing in #28755 Fix Base Model Name of LlamaForQuestionAnswering by @lenglaender in #29258 FIX [quantization/ESM] Fix ESM 8bit / 4bit with bitsandbytes by @younesbelkada in #29329 ...
I did the opposite, I put the line where I add +1 immediately before this one, becausepacked_tensor_shapeis not defined before src/transformers/integrations/bitnet.pyOutdated packed = torch.zeros(packed_tensor_shape, device=quantized_weights.device, dtype=torch.uint8) ...
"""_configure_library_root_logger()# 配置库的根记录器_get_library_root_logger().propagate =True# 将根记录器的传播设置为 True# 启用明确的格式化方式用于每个 HuggingFace Transformers 的记录器defenable_explicit_format() ->None:""" Enable explicit formatting for every HuggingFace Transformers's logger...