Transformer 的训练过程通常包括以下几个步骤: 输入表示:将输入序列的每个元素(如单词或字符)映射到一个向量表示,通常是通过嵌入层实现的。 编码器处理:输入表示经过编码器的多层处理,得到每个位置的编码表示。 解码器处理:解码器根据编码器的输出和目标序列(如果有)生成每个位置的输出表示。 损失计算:根据模型生成的输...
Transformer 与 RNN 不同,可以比较好地并行训练。 Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。 Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。 Transformer 中 Multi-Head Attention 中有多个...
Add,就是在Z的基础上加了一个残差块X,加入残差块X的目的是为了防止在深度神经网络训练中发生退化问题,退化的意思就是深度神经网络通过增加网络的层数,Loss逐渐减小,然后趋于稳定达到饱和,然后再继续增加网络层数,Loss反而增大。为什么深度神经网络会发生退化,为什么添加残差块能够防止退化问题,残差块又是什么?这就牵扯到...
基于Transformer 的预训练语言模型(T-PTLM)具备从大规模无标注文本数据学习通用语言表征并将所学知识迁移到下游任务的能力,因此已经在 NLP 领域取得了巨大的成功,这类模型包括 GPT-1、BERT、XLNet、RoBERTa、ELECTRA、T5、ALBERT、BART 和 PEGAUSUS。在更早期,NLP 系统大...
给每一个时间步分配一个数值,例如第一个单词分配“1”,第二个单词分配“2”等等。这样做的问题是,这些值很大,并且实际中遇到的句子可能比训练时见过的句子还要长,这就会导致模型泛化性能变差。 上述的第一个方案,假设现在我们想用4dim的二进制向量来表示数字,如下图所示,[0,15]的16个位置被编码为了16个4维...
Transformer模型的缺点 对于小数据集,Transformer模型的表现可能会不如传统的循环神经网络模型,因为它需要更大的数据集来训练。 Transformer模型的计算复杂度较高,需要更多的计算资源,比如GPU等。 Transformer模型的可解释性不如传统的循环神经网络模型,因为它使用了自注意力机制,难以解释每个位置的重要性。
在Transformer 模型训练中存在一个“不可能三角”,即训练速度、模型性能(效果)和计算成本这三个要素难以同时达到最优。就如同经济学中的蒙代尔三角 ,通常只能三者取其二。例如,在机器学习模型训练场景下,需在效率、质量和成本之间进行权衡。 具体到 Transformer 训练中,其关键的自注意力机制计算复杂度高、内存占用大,...
深度学习进阶篇-预训练模型[1]:预训练分词Subword、ELMo、Transformer模型原理;结构;技巧以及应用详解 从字面上看,预训练模型(pre-training model)是先通过一批语料进行训练模型,然后在这个初步训练好的模型基础上,再继续训练或者另作他用。这样的理解基本上是对的,_
谷歌的Transformer模型最早是用于机器翻译任务,当时达到了SOTA效果。Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提升模型准确率。在本文中,我们将研究Transformer模型,理解它的工作原理。
如表 1 所示,研究者对原始 TransNormer 模型进行了扩展,得到了参数量从 3.85 亿到 1750 亿的多个 TransNormerLLM 模型。然后他们基于新的大型语料库进行了全面实验和控制变量研究,结果表明新方法的性能优于基于 softmax 注意力的方法并且还有更快的训练和推理速度。