1.train_loss 不断下降,val_loss(test_lost) 不断下降 说明网络训练正常,最好情况 2.train_loss 不断下降,val_loss(test_lost) 趋于不变 说明网络过拟合,可以添加dropout和最大池化max pooling 3.train_loss 趋于不变,val_loss(test_lost) 不断下降 说明数据集有问题,建议重新选择 4.train_loss 趋于不变...
其中验证损失稳步下降,没有出现明显的过拟合迹象。然而,train_loss和val_loss的不重合并不一定是问题,...
train loss 下降 ↓,val loss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、max pooling等。 train loss 稳定,val loss 下降:数据有问题,检查数据标注有没有错,分布是否一直,是否shuffle。 train loss 稳定,val loss 稳定:学习过程遇到瓶颈,可以尝试调小学习率或batch数...
在深度学习领域,我们常遇到train loss和val loss的波动问题。当模型训练过程中,若观察到train loss和val loss数值不再发生变化,这表明模型已进入收敛阶段。通常情况下,val loss的稳定比train loss更早,说明模型在验证集上的表现趋于稳定。若val loss稳定后继续在训练,可能预示着过拟合现象的出现。如...
收敛了。一般val loss会比train loss稳定的早,val loss稳定之后再train就是overfitting了。如果training...
loss说明:1、trainloss下降↓,valloss下降↓:训练正常,网络仍在学习,最好的情况。2、trainloss下降↓,valloss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、maxpooling等。3、trainloss稳定,valloss下降:数据有问题,检查数据标注有没有错,分布是否...
过拟合特征,一般是训练集上的loss不断下降,而测试集或者验证集上的loss先下降然后再上升。而我画出来的图和题主的图不太符合这个特点。 其他人的回答也有道理,毕竟训练集上的准确率差不多100%了,让人不相信是过拟合太难了。 从经验上来判断就是过拟合了,模型泛化能力不足,train表现很好但val上较差, 解决方法...
train loss 和 val loss 的关系: Underfitting – val loss 和 train loss 的值都很大 Overfitting – val loss 的值很大 train loss的值很小 Good fit – val loss 的值很小,但是比train loss 的值稍大 Unknown fit*** - val loss 的值很小,train loss 的值很大 ***在一般情况下,train loss 的值...
变化趋势分析 1.train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) 2.train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) 3.train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset) 4.train loss 趋于不变,test loss趋于不变,说... ...
理想情况下,loss和val_loss都应同步下降,表明模型正健康地学习和泛化。如果loss下降而val_loss稳定,可能是过拟合,可通过添加Dropout层或减少网络深度来缓解。如果数据集有问题,可能需要重新混洗或选择新的数据集。当loss稳定且val_loss下降,可能意味着数据集有显著问题,需要重新审视。当两者都保持稳定...