train loss 不断下降,test loss趋于不变,说明网络过拟合;train loss 趋于不变,test loss不断下降,...
train loss 稳定,val loss 下降:数据有问题,检查数据标注有没有错,分布是否一直,是否shuffle。 train loss 稳定,val loss 稳定:学习过程遇到瓶颈,可以尝试调小学习率或batch数量 train loss 上升 ↑,val loss 上升 ↑:网络结构设计不当,参数不合理,数据集需清洗等,最差情况。 loss震荡 轻微震荡是正常的,在一定...
train_loss训练曲线一直在下降,val_loss验证loss波动一开始下降,波动越来越大,反而上升了,两者差异大。训练集的准确率1和验证集的准确率0.6,差的也挺多。上图只迭代了200,但没有改变的趋势,完全过拟合了。 对神经网络影响最大的就是学习率了,降低为原来的1/10看下效果 loss并没有直接变为0, 比较小学习率是...
说明网络过拟合,可以添加dropout和最大池化max pooling 3.train_loss 趋于不变,val_loss(test_lost) 不断下降 说明数据集有问题,建议重新选择 4.train_loss 趋于不变,val_loss(test_lost) 趋于不变 说明学习遇到瓶颈,需要减小学习率或批量batch数目 5.train_loss 不断上升,val_loss(test_lost) 不断上升 说明...
loss说明:1、trainloss下降↓,valloss下降↓:训练正常,网络仍在学习,最好的情况。2、trainloss下降↓,valloss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、maxpooling等。3、trainloss稳定,valloss下降:数据有问题,检查数据标注有没有错,分布是否...
当loss稳定且val_loss下降,可能意味着数据集有显著问题,需要重新审视。当两者都保持稳定时,可能存在学习瓶颈,这时调整学习率或batch size可能是解决之道。最不理想的情况是loss和val_loss都上升,这可能暗示着网络结构、超参数或数据质量问题,需深入检查和调整。在探索这些概念时,务必记住,loss和val_...
我不确定的是val_loss的缩进,这可能会在打印输出时导致一些问题。一般来说,我会说我对验证有一些困惑: 1)首先,我传递train_loader中的所有批次,并调整训练损失。 2)然后,我开始迭代我的val_loader以对单个批次的不可见数据进行预测,但我在val_losses列表中附加的是模型在val_loader中的最后一批数据上计算的验证...
变化趋势分析 1.train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) 2.train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) 3.train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset) 4.train loss 趋于不变,test loss趋于不变,说... ...
wandb.log({"train loss": train_epoch_loss,"val loss": val_epoch_loss,"epoch": epoch}) wandb.log({"train acc": train_epoch_acc,"val acc": val_epoch_acc,"epoch": epoch}) wandb.log({"best val acc": best_acc,"epoch": epoch}) ...
在深度学习领域,我们常遇到train loss和val loss的波动问题。当模型训练过程中,若观察到train loss和val loss数值不再发生变化,这表明模型已进入收敛阶段。通常情况下,val loss的稳定比train loss更早,说明模型在验证集上的表现趋于稳定。若val loss稳定后继续在训练,可能预示着过拟合现象的出现。如...