利用TF-IDF方法将任意长度的文档缩减为固定长度的数字列表,然后对比文本相似度,gensim工具包提供该方法。 简单复习一下具体算法: 词频TF tfi,j=ni,j∑knk,j 其中n是句中词,i是词的索引号,j是文章索引号,k是文章中所有词,上式计算的是词i在本篇出现的比率。请注意:在短文本的情况下,绝大多数词只出现一次,...
相似度为1/5=0.2 # Step 1 文件整合 把不同文本整合到一起import osimport sysimport mathfile_path_dir = './data'raw_path = './raw.data'idf_path = './idf.data'def read_file_handler(f):fd = open(f, 'r', encoding='utf-8')return fdfile_raw_out = open(raw_path, 'w', encodi...
接下来我们开始计算new_keyword_vector和tfidf_matrix的余弦相似度得分矩阵: cosine_similarities=cosine_similarity(new_keyword_vector,tfidf_matrix)cosine_similarities new_keyword_vector 和 tfidf_matrix 的余弦相似度 可以看出1最相似,0其次,2最不像。 为了让排序更方便,我们把它转换为DataFrame格式,现在我们的余...
TF-IDF的计算公式为:TF-IDF = TF * IDF 在计算文本相似度时,可以将每个文本表示为一个向量,向量的每个维度对应一个词。向量的值可以通过计算对应词的TF-IDF得到。然后可以使用向量之间的余弦相似度来度量文本之间的相似度。余弦相似度的计算公式为:cosine_similarity = (A·B) / (||A|| * ||B||),其中...
相反,如果二者不同时包含词 wi ,就会基于空间向量模型减少二者相似度。可以说,通过 TF-IDF 为句子词组向量加权后,空间向量模型融入了统计信息,增加了计算两个句子相似度的准确性。 TF-IDF 算法特点 TF-IDF 算法计算句子相似度具有执行速度快的优点,对于长句子、长文本效果较好,因为句子越长统计信息越多。对于短...
使用tfidf余弦相似度计算短句文本相似度比对 要使用TF-IDF和余弦相似度来计算短句文本的相似度,您可以按照以下步骤进行操作: 1.预处理数据: 将文本转换为小写。 删除停用词(例如,“的”,“和”等常用词)。 删除标点符号。 将文本分解为单词或n-grams。 2.计算TF-IDF: 计算每个单词的词频(TF)。 计算每个单词...
1.利用TF-IDF计算相似文章: 1)使用TF-IDF算法,找出两篇文章的关键词 2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频) 3)生成两篇文章各自的词频向量 4)计算两个向量的余弦相似度,值越大就表示越相似 ...
任务说明:利用TF-IDF词袋方法,进行句子相似度计算。 实验数据:使用上一篇“TF-IDF的理论与实践“(https://www.jianshu.com/p/c55c6cae24ad)中同样的语料库file_corpus,然后从语料库中切分句子,取出现句子频率最高的前10000句子样本集。选取5个样本句子,然后利用相似度来计算出与样本句子最相似的句子。
(1)使用TF-IDF算法,找出两篇文章的关键词; (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频); (3)生成两篇文章各自的词频向量; (4)计算两个向量的余弦相似度,值越大就表示越相似。