1. 向量与向量空间 利用数据工具的前提是,需要构建一个向量空间。在这个空间中,为每个单词找到一个位置,这种词表示方式就是词向量。向量空间(Vector Space)是指由向量组成的集合,具有特定的代数结构和运算规…
举个例子,第一串数字就是文档1的向量表达,第二串是文档2的向量表达,第三串是问题的向量表达。他们都是空间中的点。 这里使用三维空间代替四维空间: 所以,TF-IDF 是一种向量表达形式,以后在接触 NLP 模型的过程中,还会不断听到词向量,句向量,文章向量等等不同的向量表达形式。 后记 以上就是【NLP】入门(三):...
我们把它叫做文本D的权值向量表示,其中Wk是Tk的权重,1<=k<=N。 在上面那个例子中,假设a、b、c、d的权重分别为30,20,20,10,那么该文本的向量表示为 D(30,20,20,10) 在向量空间模型中,两个文本D1和D2之间的内容相关度Sim(D1,D2)常用向量之间夹角的余弦值表示,公式为: 其中,W1k、W2k分别表示文本D1...
1.1 向量空间 (VSM) 模型 1.2 TF-IDF 1.3 TF-IDF 的变种和改进 3. 特征频率的倒数的对数值代替 IDF 1.4 TF-IDF 的应用 2.BM25算法以及变种算法简介 2.1 BM25详解 2.2 BM25算法简易 2.3 BM25 的变种和改进 2.3.1 BM25L 2.3.2 BM25+ 2.3.3 BM25-adpt 小结 深入理解TF-IDF、BM25算法与BM25变种:揭秘信息...
向量空间模型是一个把文本文件表示为标识符(比如索引)向量的代数模型,它应用于信息过滤、信息检索、索引以及相关排序。 1 定义 文档和查询都用向量来表示: 每一维都对应于一个个别的词组。如果某个词组出现在了文档中,那它在向量中的值就非零。已经发展出了不少的方法来计算这些值,这些值叫做(词组)权重。其中一...
TF-IDF是一种用于信息检索(Information Retrieval)与文本挖掘(Text minning)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度,也是建立在向量空间模型理论中的一种统计技术。 字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中...
1 TFIDF中的TF表达式如图示:2 TFIDF中的IDF表达式如图示:3 TFIDF向量可以由不同级别的分词产生(单个词语,词性,多个词(n-grams))。具体如图示:4 导入相应的模块如图示:5 读取word文件中的内容如图示:6 进行中文划词,并将其转化为DataFrame类型,方便删除不许要的数据。如图示:7 划分结果如图示:8 ...
第四步,写出词频向量。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 余弦相似度缺陷 这类算法没有很好地解决文本数据...使用余弦相似度算法计算文本相似度 在工作中一直使用余弦相似度算法计算两段文本的相似度和两个用户的相似度。一直弄不明白多维的余弦相似度公式是怎么...
TF-IDF(Term Frequency-Inverse Document Frequency)是一种常见的词向量模型,它通过对文档中单词出现的频率和在其他文档中出现的频率来计算单词的权重。TF表示单词在文档中出现的频率,IDF则是对单词重要性的评估,通常为log(N/n),其中N为总文档数,n为包含该单词的文档数。TF-IDF模型简单有效,在早期的文本分类和信...
向量空间模型是一个把文本文件表示为标识符(比如索引)向量的代数模型,它应用于信息过滤、信息检索、索引以及相关排序。 1 定义 文档和查询都用向量来表示: 每一维都对应于一个个别的词组。如果某个词组出现在了文档中,那它在向量中的值就非零。已经发展出了不少的方法来计算这些值,这些值叫做(词组)权重。其中一...