现在已经计算出不同词的TF-IDF值。 如果需要提取某个文档的关键词,只需要将这个文档,分词、去重,然后根据TF-IDF排序,TF-IDF比较大的就是关键词,具体要返回几个关键词,这个需要自己根据需求考虑。 2.3 封装获取关键词代码 代码语言:javascript 复制 publicList<String>keyword(Set<String>tokens,int topN){List<Lis...
View Code
同时计算TF-IDF值如下: 通过TF-IDF计算,“大数据”在某篇文章中出现频率很高,这就能反应这篇文章的主题就是关于“大数据”方向的。如果只选择一个词,“大数据”就是这篇文章的关键词。所以,可以通过TF-IDF方法统计文章的关键词。同时,如果同时计算“贵州”、“大数据”、“分析”的TF-IDF,将这些词的TF-IDF相...
可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。*/$text= 'i very good, ha , i very nice, i is good';$obj=newDocument($text);$obj->bui...
在jieba 中,使用jieba.analyse.extract_tags()函数就可以基于 TF-IDF 算法提取文章的关键词,其中参数allowPOS的作用是限制关键词的词性,jieba 分词常见词性的对照可以参考下图。 3. 优缺点分析 通过上述代码可以发现,使用 jieba 库基于 TF-IDF 算法的关键词提取,其效果算不上优秀,但也不是很差,与人工提取还有一定...
5.1 关键词提取技术概述 相对于有监督的方法而言,无监督的方法对数据的要求就低多了。既不需要一张人工生成、维护的词表,也不需要人工标准语料辅助进行训练。因此,这类算法在关键词提取领域的应用更受到大家的青睐。目前常用的算法有TF-IDF算法、TextRank算法和主题模型算法(包括LSA、LSI、LDA等) ...
第三步,计算TF-IDF: 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。 3.jieba库实现 jieba库实现TF-IDF算法主要是通过调用extract_tags函数实现。extrac...
下面是一个使用Python编写的TF-IDF算法的示例代码: from sklearn.feature_extraction.text import TfidfVectorizer # 语料库 corpus = [ "TF-IDF是一种用于文本分析的重要算法。", "通过TF-IDF,我们可以提取文本中的关键词。", "关键词提取有助于文本的信息检索和摘要生成。" ] # 创建TF-IDF向量化器 tfidf...