提取文本关键词是很常见的一个需求,比较常见简单的算法,像 TF-IDF 就可以用来关键词提取。 在Python 中有很多库都实现了这个算法,如果仅仅是为了做一些实验研究使用python中的库来作为提取算法是比较便捷的方式,但是如果是应用到生产环境中 python 将会有很多限制,比如需要将提取关键词算法部署到服务器中,并提供一个...
在使用TF-IDF(Term Frequency-Inverse Document Frequency)提取关键词时,我们主要遵循以下步骤: 导入必要的库和模块: 我们需要导入处理文本和构建TF-IDF模型所需的库,如jieba(用于中文分词)、pandas(用于数据处理)、numpy(用于数值计算)、sklearn中的CountVectorizer和TfidfTransformer(用于构建TF-IDF模型)。 python impor...
(如果还计算"的"字的TF-IDF,那将是一个极其接近0的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。 除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。
对于TFIDF算法来说,如果对当前现有的文本数据进行关键词提取,就可以使用当前的语料计算各个词语的权重,获取对应文档的关键词,而对于已经有了一部分语料,提取新文本的关键词的话,新文本中的关键词提取效果比较依赖于已有的语料。 对于TextRank来说,如果待提取关键词的文本较长,那么可以直接使用该文本进行关键词提取,不...
TF-IDF与余弦相似性的应用(一):自动提取关键词 下面通过一个示例进行讲解TF-IDF权重计算的方法。 假设现在有一篇文章《贵州的大数据分析》,这篇文章包含了10000个词组,其中“贵州”、“大数据”、“分析”各出现100次,“的”出现500次(假设没有去除停用词),则通过前面TF词频计算公式,可以计算得到三个单词的词频,...
基于TF-IDF 算法进行关键词提取 在信息检索理论中,TF-IDF 是 Term Frequency - Inverse Document Frequency 的简写。TF-IDF 是一种数值统计,用于反映一个词对于语料中某篇文档的重要性。在信息检索和文本挖掘领域,它经常用于因子加权。TF-IDF 的主要思想就是:如果某个词在一篇文档中出现的频率高,也即 TF 高;并...
步骤4:基于IF-IDF筛选关键词 我们往下滑动报告页面,会在特征词列表看到TF-IDF这一列 我们可以点击倒序和正序来筛选关键词,这个结果就是我上面提到的自动根据TF-IDF抽取关键词的结果数据哦 文本分析 报告生成 tf-idf关键词抽取 当前你也可以下载特征词表,进一步做分析,以及做根据TF-IDF高低筛词,来做一张关键...
本文目的,利用TF-IDF算法抽取一篇文章中的关键词,关于TF-IDF,可以参考TF-IDF与余弦相似性的应用(一):自动提取关键词 - 阮一峰的网络日志。 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。(百度百科)
第三步,计算TF-IDF: 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。 3.jieba库实现 jieba库实现TF-IDF算法主要是通过调用extract_tags函数实现。extrac...