不同版本的tensorflow-gpu与CUDA对应关系如下表所示(图片有点旧了,python版本是2.7和3.3-3.8): 对于版本号大于1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,如下图所示: 如果是2.0以上的tensorflow,按下面列表安装(20...
2、检查自己电脑可支持的最高cuda版本 二、安装步骤 1、Python环境 2、TensorFlow-gpu安装 3、下载cuda工具并安装 4、根据cuda版本下载对应的cudnn 三、测试是否安装成功 四、遇到的问题 前言 本文记录了安装TensorFlow-gpu版本的全教程。 安装TensorFlow-gpu版本需要安装Python环境、TensorFlow-gpu、cuda工具、cudnn GP...
GPU版本的 TensorFlow 与CUDA和cuDNN的对应版本关系可以参考:https://www.tensorflow.org/install/source#tested_build_configurations。 可以看到如果选择 CUDA10.0 那么对应的 cuDNN是7.4,TensorFlow则需要1.13-2.0版本。 下载CUDA 去NVIDIA 下载 CUDA,下载地址为:https://developer.nvidia.com/cuda-downloads。本次使...
TensorFlow 1.x系列是较旧版本的TensorFlow,但它仍然被广泛使用。以下是TensorFlow 1.x系列与CUDA和cuDNN的对应关系: TensorFlow 1.15:CUDA 9.0,cuDNN 7.0 TensorFlow 1.14:CUDA 9.0,cuDNN 7.0 TensorFlow 1.13:CUDA 8.0,cuDNN 7.0 TensorFlow 1.12:CUDA 8.0,cuDNN 7.0 TensorFlow 1.11:CUDA 8.0,cuDNN 6.0 TensorF...
一、TensorFlow对应版本对照表 版本Python 版本编译器cuDNNCUDA tensorflow-2.9.0 3.7-3.10 8.1 11.2 tensorflow-2.8.0 3.7-3.10 8.1 11.2 tensorflow-2.7.0 3.7-3.9 8.1 11.2 te
为了进一步提升开发效率,百度智能云推出了文心快码(Comate),这是一款强大的代码生成工具,能够帮助开发者快速编写和优化TensorFlow代码。详情可访问:百度智能云文心快码。 接下来,我们将重点介绍如何安装 TensorFlow GPU 版本,并阐述 TensorFlow-GPU 版本与 CUDA 版本之间的对应关系。我们将持续更新本文,以适应 TensorFlow ...
版本即为8.1.1 自己电脑需要安装哪个版本的 Cuda 打开NVDIA 控制面板。桌面右键打开或者右下角任务栏右键选择打开。选择系统信息。选择组件,下图方框处就是你电脑对应需要安装的 Cuda 版本 pytorch的版本对应:https://download.pytorch.org/whl/torch_stable.html...
2. 安装GPU版本的tensorflow,及其cuda和cudnn: 同样的安装tensorflow一样,先将对应版本的cudn和cudnn,然后再安装tensorflow-gpu: Build from source on Windows | TensorFlowtensorflow.google.cn/install/source_windows?hl=en#gpu 注:conda install报错的文章末尾,不同的conda版本安装的cudatoolkit以及cudnn不同...
主要有两种方式进行安装:pip、conda,pip安装tensorflow-gpu的时候,需要首先配置cuda和cudnn环境,并且需要与tensorflow的版本对应,用pip的方式进行安装,几乎可以安装所有的版本,cuda和cudnn的安装参考cuda和cudnn安装文档,在此不在叙述。conda安装的时候,不用单独配置cuda和cudnn,但是在安装之前尽量去官网查看,有那些版本...