View Solution sin−1a−cos−1b=sin−1(ab−√1−a2√1−b2) View Solution Prove that2tan−1(12)+tan−1(17)=sin−1(3125√2) View Solution Prove that : tan−1(√1−x21+x)=12cos−1x View Solution Prove that :cos−1(1−a21+a)+cos−1(1−b21+b2)=2ta...
Step 2: Use the tangent subtraction formulaRecall the tangent subtraction formula: tan(A−B)=tanA−tanB1+tanAtanB. In our case, let A=π4 and B=tan−1(t). We know that: tan(π4)=1andtan(tan−1(t))=t. Thus, we have: tan(π4−tan−1(t))=1−t1+t. ...
Provied information about 3,6,9,12,15,18,21,24,27,30-decaoxaoctatriacontan-1-ol(Molecular Formula: C28H58O11, CAS Registry Number:19327-44-7 ) ,Boiling Point,Melting Point,Flash Point,Density, Molecular Structure,Risk Codes,Synthesis Route at guidechem
Question: Prove that {eq}\displaystyle{ \tan 60^\circ = \frac{ 2 \tan 30^\circ}{ 1-\tan^2 30^\circ } } {/eq} Special Angles: The angles {eq}30^{\circ}, 45^{\circ}, 60^{\circ} {/eq} are considered special angles because exact values are known for the trigonometric functi...
Provied information about 89-(4-nonylphenoxy)-3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87-nonacosaoxanonaoctacontan-1-ol(Molecular Formula: C75H144O31, CAS Registry Number:2073-51-0 ) ,Boiling Point,Melting Point,F
In differential calculus, the chain rule (written below) is a derivative formula that is applied to evaluate the rate of change (known as derivative) of the composite functions. The composite functions are generally expressed asf(g(x)). ...
Given that y=a(b(x)), we determine dydx by differentiating the function outside in: dydx=a′(b(x))b′(x) Answer and Explanation: We find dydx by utilizing chain rule: {eq}\begin{align*} \displaystyle \; y & = \tan^{-1}(-x^6 +...Become...
Find quality suppliers and manufacturers of 3484-68-2(4-O-carbamoyl-2-deoxy-2-{[(3S,10S,17S,24S,31S)-3,10,17,24,31,34-hexaamino-8,15,22,29-tetraoxo-7,14,21,28-tetraazatetratriacontan-1-oyl]amino}-N-[(3aS,7R,7aS)-7-hydroxy-4-oxo-3a,4,5,6,7,7a-hexahydro-1H
【解析】 In the solution we will use the subtraction formula for the tangent $$ \tan ( a - b ) = \frac { \tan a - \tan b } { 1 + \tan a \cdot \tan b } $$ $$ w h i c h g i v e s t h e f o r m u l a f o r t h e a r c t...
Problem 19. In the adjoinin g(gure,A,B,C,D,A_1,B_1,C_1,D_1arctaner+heve_1 of a unit