Pi Alpha Alpha (PAA) is the national academic honor society for public administration. This study presents the results of a comprehensive survey of PAA Chapter advisors focusing on inductee characteristics, induction requirements, chapter activities, chapter officers, and suggestions for improving PAA ...
设{\alpha}{\in}(0,\frac{{\pi}}{2}),{\beta}{\in}(0,\frac{{\pi}}{2}),且1 \frac{1}{{\tan}{\alpha}{\tan}{\beta}}=\frac{1}{{\sin}{\alpha}},则 A. 2{\beta}-{\alpha}=\frac{{\pi}}{2} B. 2{\beta}+{\alpha}=\frac{{\pi}}{2} C. 2{\alpha}...
【题目】若 _ ,a是锐角,则 \$\tan ( \pi - \alpha )\$ 是 相关知识点: 试题来源: 解析 【解析 \$\tan ( \pi - \alpha ) = - \tan \alpha = - \frac { \sin \alpha } { \cos \alpha } = - \frac { 1 2 } { 5 }\$ ...
$\because \tan \left(\alpha +\dfrac{\pi }{4}\right)=\dfrac{1}{7}$$\therefore \dfrac{1+\tan \alpha }{1-\tan \alpha }=\dfrac{1}{7}$解得$\tan \alpha =-\dfrac{3}{4}$,$\because \alpha \in (\dfrac{\pi }{2}$,$\pi )$,$\because \sin ^{2}\alpha +\cos ...
结果1 题目 { \tan (\pi - \alpha )\cos (2\pi - \alpha )\sin (- \alpha }\div { \cos (- \alpha - \pi )\sin (- \pi - \alpha )}例4值为 A. -2 B. -1 C. 1 D. 2 相关知识点: 试题来源: 解析 B 反馈 收藏 ...
【题目】【题目】【题目】化简: \$\tan ( \pi + \alpha ) \cos ( 2 \pi + \alpha ) \sin ( \alpha -\$ \$\frac { 3 \pi } { 2 }\$ ) 相关知识点: 试题来源: 解析 【解析】 【解析】 【解析】 【解析】 【解析】 【解析】 【解析】 考点:运用诱导公式化简求值 专题:三角函数的求...
यदि tan alpha=2 तथा alpha in (pi, (3pi)/(2)) हो, तो व्यंजक (cos alpha)/(sin^(3)alpha+cos^(3)alpha) का मान होगा।
因为\tan(\alpha+\frac{\pi}{4})=\frac{\tan \alpha +1}{1-\tan \alpha }=\frac{1}{7},解得\tan\alpha =-\frac{3}{4},又因为\alpha \in (\frac{\pi}{2},\pi),因此\left\{\eqalign{& \sin\alpha=\frac{3}{5}\cr& \cos \alpha =-\frac{4}{5} }\right.,因此\sin...
已知\tan (\pi + \alpha )= -\dfrac{1}{2},求下列各式的值.(1)\dfrac{2\cos (\pi -\alpha )-3\sin (\pi + \alpha )}{4\cos (\alpha -2\pi )+ \cos (\dfrac{3\pi }{2}-\alpha )}; (2)\sin ^{2}\alpha -2\sin \alpha \cos \alpha + 4\cos ^{2}\alpha 答案 ...
\$\frac { \sin ( \pi - \alpha ) } { \tan ( \pi + \alpha ) } \cdot \frac { \cot \left( \frac { \pi } { 2 } - \alpha \right) } { \sin \left( \frac { \pi } { 2 } + \alpha \right) }\$ \$\frac { \sin ( \pi - \alpha ) } { \tan (...