t-SNE的第二个特征是可调整的参数,perplexity,它说明了如何在数据的局部和全局之间平衡注意力。从某种...
t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种非常流行的非线性降维技术,主要用来对高维数据进行可视化。 本文将尽可能是使用简单的数学公式描述出t-SNE的工作原理,并给出使用t-SNE对图像的embedding进行可视化的code sample。 什么是t-SNE 假设一个数据集x,数据集中的每个样本都是D维的,\mathbf{X}\in...
Jake Hoare 的博客并没有详细解释 t-SNE 的具体原理和推导过程,因此下面我们将基于 Geoffrey Hinton 在 2008 年提出的论文和 liam schoneveld 的推导与实现详细介绍 t-SNE 算法。如果读者对这一章节不感兴趣,也可以直接阅读下一章节 Jake Hoare 在实践中使用 t-SNE 进行数据可视化。 liam schoneveld 推导与实现地...
在MNIST 数据集上,该数据集的每张数字图片大小为 28\times28 也就是说特征维度为 728 ,通过使用 sklearn 算法库中的 t\text{-}SNE 和PCA 算法进行降维可视化测试,测试结果如下图所示: from sklearn.manifold import TSNE from sklearn.datasets import load_iris,load_digits from sklearn.decomposition import...
通过上述步骤迭代优化,t-SNE 最终可以得到一个低维空间中的表示,使得高维数据的局部相似性在低维空间中得以保留 4. t-SNE 的代码示范 在这部分,我们将生成一个带有武侠风格的数据集,包含三个门派的武侠人物。数据集的特征包括武力值、智力值和身法值。我们将使用 t-SNE 进行降维,并展示其可视化效果。接下来...
尽管对于可视化高维数据非常有用,但t-SNE图有时可能是神秘的或误导性的。通过探索它在简单情况下的行为方式,我们可以学习如何更有效地使用它。 一种用于探索高维数据的流行方法是在2008年由t-SNE引入的 van der Maaten和Hinton]。该技术在机器学习领域已经变得普遍,因为它具有几乎神奇的能力,可以从具有数百甚至数千...
因为t-SNE 是基于随机近邻嵌入而实现的,所以首先我们需要理解随机近邻嵌入算法。 随机近邻嵌入(SNE) 假设我们有数据集 X,它共有 N 个数据点。每一个数据点 x_i 的维度为 D,我们希望降低为 d 维。在一般用于可视化的条件下,d 的取值为 2,即在平面上表示出所有数据。
因为t-SNE 是基于随机近邻嵌入而实现的,所以首先我们需要理解随机近邻嵌入算法。 随机近邻嵌入(SNE) 假设我们有数据集 X,它共有 N 个数据点。每一个数据点 x_i 的维度为 D,我们希望降低为 d 维。在一般用于可视化的条件下,d 的取值为 2,即在平面上表示出所有数据。
当构建一个预测模型时,第一步一般都需要理解数据。虽然搜索原始数据并计算一些基本的统计学数字特征有助于理解它,但没有什么是可以和图表可视化展示更为直观的。然而将高维数据拟合到一张简单的图表(降维)通常是非常困难的,这就正是 t-SNE 发挥作用的地方。
因为t-SNE 是基于随机近邻嵌入而实现的,所以首先我们需要理解随机近邻嵌入算法。 随机近邻嵌入(SNE) 假设我们有数据集 X,它共有 N 个数据点。每一个数据点 x_i 的维度为 D,我们希望降低为 d 维。在一般用于可视化的条件下,d 的取值为 2,即在平面上表示出所有数据。