将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更...
将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更...
其次,而Swin Transformer采用了局部窗口的注意力机制,即每个位置只与其周围的局部窗口进行关联。这种方式大大减少了注意力机制的计算量。 1.3. Swin Transformer与VIT的区别 Swin Transformer对图像进行不同倍数的下采样(如4倍、8倍、16倍),可以得到不同尺度的特征表示,模型可以学会在多尺度下理解和检测目标,适应不同...
Swin Transformer是一个新的视觉变换器,能够作为通用的计算机视觉骨干网络。这个模型解决了将Transformer从语言处理领域适应到视觉任务中的挑战,主要是因为这两个领域之间存在差异,例如视觉实体的尺度变化大,以及图像中像素的高分辨率与文本中的单词相比。下图对比展示了Swin Transformer与Vision Transformer (ViT)的不同之处...
4. 移动窗口分区:为了在连续的Swin Transformer块中引入跨窗口连接的同时保持非重叠窗口的有效计算,提出了一种移动窗口分区方法。这种方法在连续的块之间交替使用两种分区配置。第一个模块使用常规的窗口分区策略,然后下一个模块采用的窗口配置与前一层相比,通过移动窗口偏移了一定距离,从而实现窗口的交替。
本文给大家带来的改进机制是利用Swin Transformer替换YOLOv8中的骨干网络其是一个开创性的视觉变换器模型,它通过使用位移窗口来构建分层的特征图,有效地适应了计算机视觉任务。与传统的变换器模型不同,Swin Transformer的自注意力计算仅限于局部窗口内,使得计算复杂度与
该代码是CSWin Transformer的核心部分,保留了模型的主要结构和功能,去除了不必要的细节和冗余部分。这个文件实现了一个名为CSWin Transformer的深度学习模型,主要用于计算机视觉任务。该模型由微软公司开发,采用了基于变换器(Transformer)的架构,具有多种不同规模的变体(如CSWin_tiny、CSWin_small、CSWin_base和CSWin_...
PatchEmbed:将输入图像转换为补丁嵌入的模块,使用卷积层进行处理并调整输出的维度顺序。 以上代码构成了一个基于ViT的图像编码器的核心部分,能够将输入图像有效地编码为潜在空间的表示。 这个程序文件定义了一个基于视觉变换器(Vision Transformer, ViT)架构的图像编码器,主要用于将图像编码为紧凑的潜在空间表示。文件中包...
4. 移动窗口分区:为了在连续的Swin Transformer块中引入跨窗口连接的同时保持非重叠窗口的有效计算,提出了一种移动窗口分区方法。这种方法在连续的块之间交替使用两种分区配置。第一个模块使用常规的窗口分区策略,然后下一个模块采用的窗口配置与前一层相比,通过移动窗口偏移了一定距离,从而实现窗口的交替。