根据标准的计量理论,非线性模型 (如 Logit、Probit) 的分组回归系数不能直接比较,因为存在 “误差项的方差设定不同、系数测度标准不同、遗漏无关变量对系数测度的干扰” 等问题 (Mize, 2019;Wooldridge, 2010;洪岩璧, 2015),并且非线性模型的回归系数一般也不能直接度量某个解释变量对结果变量的边际影响 (Marginal...
1. 从 bdiff 命令的 “美中不足” 说起 在往期推文中,连老师为大家介绍了在 Stata 当中使用bdiff命令检验分组回归后的组间系数差异是否显著,详见推文「如何检验分组回归后的组间系数差异?」。但略有遗憾的是,在使用bdiff命令进行系数组间差异检验的操作过程中,大家可能会产生如下两点困惑。 1.1 两组变量对应相同...
学者一般建议将非线性模型的回归系数转化为平均边际效应 (Average Marginal Effect, AME)。平均边际效应又称为 平均偏效应 (Average Partial Effect, APE)。 与非线性模型的回归系数不同,平均边际效应系数在不同组别间、或在不同模型设定下均具有较好的可比性。因此,如果想要比较分组回归系数的组间差异,学者往往建议...
学者一般建议将非线性模型的回归系数转化为平均边际效应 (Average Marginal Effect, AME)。平均边际效应又称为 平均偏效应 (Average Partial Effect, APE)。 与非线性模型的回归系数不同,平均边际效应系数在不同组别间、或在不同模型设定下均具有较好的可比性。因此,如果想要比较分组回归系数的组间差异,学者往往建议...
学者一般建议将非线性模型的回归系数转化为平均边际效应 (Average Marginal Effect, AME)。平均边际效应又称为 平均偏效应 (Average Partial Effect, APE)。 与非线性模型的回归系数不同,平均边际效应系数在不同组别间、或在不同模型设定下均具有较好的可比性。因此,如果想要比较分组回归系数的组间差异,学者往往建议...
学者一般建议将非线性模型的回归系数转化为平均边际效应 (Average Marginal Effect, AME)。平均边际效应又称为 平均偏效应 (Average Partial Effect, APE)。 与非线性模型的回归系数不同,平均边际效应系数在不同组别间、或在不同模型设定下均具有较好的可比性。因此,如果想要比较分组回归系数的组间差异,学者往往建议...
根据标准的计量理论,非线性模型 (如 Logit、Probit) 的分组回归系数不能直接比较,因为存在 “误差项的方差设定不同、系数测度标准不同、遗漏无关变量对系数测度的干扰” 等问题 (Mize, 2019;Wooldridge, 2010;洪岩璧, 2015),并且非线性模型的回归系数一般也不能直接度量某个解释变量对结果变量的边际影响 (Marginal...
根据标准的计量理论,非线性模型 (如 Logit、Probit) 的分组回归系数不能直接比较,因为存在 “误差项的方差设定不同、系数测度标准不同、遗漏无关变量对系数测度的干扰” 等问题 (Mize, 2019;Wooldridge, 2010;洪岩璧, 2015),并且非线性模型的回归系数一般也不能直接度量某个解释变量对结果变量的边际影响 (Marginal...
学者一般建议将非线性模型的回归系数转化为平均边际效应 (Average Marginal Effect, AME)。平均边际效应又称为 平均偏效应 (Average Partial Effect, APE)。 与非线性模型的回归系数不同,平均边际效应系数在不同组别间、或在不同模型设定下均具有较好的可比性。因此,如果想要比较分组回归系数的组间差异,学者往往建议...