Stable Diffusion现有的采样方法多达30种。 让人眼花缭乱,不知该如何选择,特别是新手小白连搞懂它们之间的区别都困难。 而且在这些采样方法里,有很多都是已经过时、被淘汰的,或者是效果不好、极少使用的 那么我们到底应该选择什么采样方法呢?本期图文将对这些采样方法进行分类以及全解析,最后会列出我个人比较推荐的采样...
DDIM(更准确但速度更慢)和PLMS(伪线性多步方法)是Stable Diffusion v1附带的采样器。PLMS是DDIM更新、更快的替代方案。 UniPC:Unified Predictor-Corrector,是2023年发布的新采样器。受到ODE求解器的启发,它可以在5-10步内实现高质量图像生成。另外,使用UniPC采样器,需要在设置->采样器参数中,将UniPc变体改为bh...
3 新式采样器 LCMStable Diffusion WebUI 1.8.0 新增的采样器,需要配合专门的 LCM 大模型,可以在 6-10 个步骤内实现质量不错的图像生成,CFG 一般在 1~2 之间 4 总结 4.1 祖先采样器 名字中带a的采样器表示这类采样器为祖先采样器。这一类采样器会在每一个采样步骤中向图像添加噪声,因此采样结果具有随机性。
1、同样一个参数下,不同采样方法生成的图片略有差异(见下面详细测试部分)。其中,DPM2 Karras和DPM++2M Karras、LMS Karras、DPM++2M、DPM2、Heun、Euler等7种采用方法生成的图片差异只有一点点。DPM2 a Karras和DPM2 a人物姿势几乎一样,只是背景略有差异。因此,可以采用不同采用方法来微调最终生成的图片。 2、...
Stable Diffusion中提供了19种采样方法(Sampler)可以选择,Euler a, Euler, LMS, Heun, DPM2, DPM2 a, DPM++ 2S a, DPM++ 2M, DPM++ SDE, DPM fast, DPM adaptive, LMS Karras, DPM2 Karras, DPM2 a Karras, DPM++ 2S a Karras, DPM++ 2M Karras, DPM++ SDE Karras, DDIM, PLMS这19种采样方法...
采样方法(Sampler method)是每次出图都必须选择的一个功能,在采样方法(Sampler method)中有很多种采样器可以选择,不同的采样方法会产生不同的出图效果。 那么什么是采样器呢?采样器就是通过去除图像噪声,生成随机图像并重复几次这个过程得到干净的图像。去噪的方法有很多种。通常需要在速度和准确性之间做出权衡。
通常情况下,为了加速扩散模型的采样,研究者往往通过对 Diffusion ODE 使用高阶求解器来进行加速,例如经典的 Runge-Kutta 方法(RK45),这是因为 ODE 不会带来额外的随机性,离散化步长可以相对选取得更大一些。在给定 s 时刻的解后,Runge-Kutta 方法基于离散化如下积分: 这样的离散化将 Diffusion ODE 整体看做一个...
默认方法与Karras采样的对比 DDIM与PLMS(已过时,不再使用) DDIM(去噪扩散隐式模型)和PLMS(伪线性多步方法)是伴随Stable Diffusion v1提出的采样方法,DDIM也是最早被用于扩散模型的采样器。PLMS是DDIM的一种更快的替代方案。当前这两种采样方法都不再广泛使用。
1、为了生成图像, Stable Diffusion 会在潜在空间中生成一个完全随机的图像 2、噪声预测器会估算图像的噪声 3、噪声预测器从图像中减去预测的噪声 4、这个过程反复重复 N 次以后,会得到一个干净准确的图像 这个去噪的过程,就被称为采样。 采样中使用的方法被称为 Sampling method (采样方法或者是采样器)。