框架间的边缘连接连续框架之间的相同节点,关节坐标用作ST-GCN的输入。 Intro创新点部分: 那Intro说了这么多也该结尾了,会议文章intro结尾的惯例,来三个创新点: 1)提出了ST-GCN,这是一个基于图的动态骨架建模的通用模型 2)提出了ST-GCN中卷积核的设计原则,以满足骨架建模的特定需求 3)SOTA啦 Realated: 相关工...
ST-GCN是一种新的基于骨架的模型动作识别网络模型,建立了一组空间在骨架序列上的时间图卷积。在两个具有挑战性的大规模数据集,提出的ST-GCN优于之前最先进的骨架模型。此外,ST-GCN可以捕捉运动信息动态骨架序列是互补的RGB模式。基于骨架的组合模型基于框架的模型进一步提高了性能在动作识别。ST-GCN模型的灵活性为...
搭建S-GCN模型 所谓ST-GCN的S和T就是空间和时间。为了模仿2D卷积,我们需要设置滑动窗口。在时间维度上其实这个操作相当简单,因为它是一个时序信息;在空间上稍复杂,因为它是一个图信息。因此我们分两步构建ST-GCN。先构建S-GCN: classSpatialGraphConvolution(nn.Module):def__init__(self,in_channels,out_channe...
回顾 ST-GCN 的提出,我们总结了两个重要的思想跨越。第一个是从将骨架序列理解为一帧帧的骨架演进为将整个视频理解为一个整体的时空图,这使得用一个统一的模型来分析动作成为可能。第二个是从原始 GCN 的朴素思想演进为使用基于划分规则的卷积定义。这个思想使得我们可以超越原始 GCN 并得到巨大的性能提升,该...
ST-GCN 的层次性消除了手动划分部分或遍历规则的需要。这不仅能获得更强的表达能力和更高的性能(如我们的实验所示),而且还使其易于在不同的环境中推广。在通用 GCN 公式化的基础上,我们还基于图像模型的灵感研究设计了图卷积核的新策略。 这项工作的主要贡献在于三个方面:1)我们提出 ST-GCN,一个基于图的动态...
Github 代码:https://github.com/yysijie/st-gcn 简介 近日,香港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外...
近日,港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。本文...
ST-GCN是香港中文大学提出一种时空图卷积网络,可以用它进行人类行为识别。这种算法基于人类关节位置的时间序列表示而对动态骨骼建模,并将图卷积扩展为时空图卷积网络而捕捉这种时空的变化关系。 1.1 模型通道 基于骨架的数据可以从动作捕捉设备中获得,也可以从视频中获得姿态估计算法。通常数据是一个坐标系序列,每个坐标...
本项目首次将基于人体骨架关键点的人类动作识别算法 ST-GCN,即时空图卷积网络模型,运用于花样滑冰动作识别,可以实时地识别视频中花样滑冰运动员的技术动作并添加标注予以显示,帮助更多入门级别的观众了解花样滑冰,使其能更好的比较和体会不同的花样滑冰动作,对花样滑冰运动的进一步推广有积极的作用。 欢迎报名直播课加入...
ST-GCN原理总结 1 网络特色 1.传统的骨骼建模方法通常依赖于手工制作的部件或遍历规则,从而导致表达能力有限和泛化困难。这里提出了一种新的动态骨架模型,它通过自动从数据中学习空间和时间模式,超越了以前方法的限制。 2.骨架是以图形的形式,不是2D或3D坐标形式,这使得使用卷积网络等经过验证的模型变得困难。因此,...