机器学习论文笔记(五):Squeeze-and-Excitation Networks arxiv:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch 简介: Sequeeze-and-Excitation(SE) block是feature map前面的加的一个(魔改)的优化子结构,通过这个这...
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks Squeeze-and-Excitation Networks(SENet)是由自动驾驶公司Momenta在2017年公布的一种全新的图像识别结构,它通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。这个结构是2017 ILSVR竞赛的冠军,top5的错误率达到了2.2...
论文:Squeeze-and-Excitation Networks 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch Sequeeze-and-Excitation(SE) block并不是一个完整的网络结构,而是一个子结构,可以嵌到其他分类或检测模型中,作者采用...
代码实现为 classBasicBlock(nn.Module):expansion=1def__init__(self,inplanes,planes,stride=1,downsample=None):super(BasicBlock,self).__init__()self.conv1=conv3x3(inplanes,planes,stride)self.bn1=nn.BatchNorm2d(planes)self.relu=nn.ReLU(inplace=True)self.conv2=conv3x3(planes,planes)self.bn2...
Pytorch的代码实现,来自github:github.com/ai-med/squee import torch import torch.nn as nn import torch.nn.functional as F class ChannelSELayer(nn.Module): """ Re-implementation of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*...
论文代码地址:https://github.com/hujie-frank/SENet PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch 基本目录如下: 摘要 核心思想 总结 ---第一菇 - 摘要--- 1.1 论文摘要 卷积神经网络(CNNs)的核心模块其实就是卷积操作,该操作通过融合每一层局部感受野的空间和不同通道信息来构建特征。在此...
论文:Squeeze-and-Excitation Networks 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch Sequeeze-and-Excitation(SE) block并不是一个完整的网络结构,而是一个子结构,可以嵌到其他分类或检测模型中,作者采用...
Squeeze-and-Excitation Networks论文解读 简介 第一个空间注意力模型,取得2017ImageNet分类比赛第一;即插即用模块,可嵌入到基准网络中(如ResNet,Inception等);代码开源:(Caffe)https://github.com/hujie-frank/SENet(PyTorch):https://github.com/moskomule/senet.pytorch(Tensorflow):https://github....
注意力机制是目前最有前景的CV方向之一,有望真正实现NLP与CV的统一,注意力机制模块的简单易用,即插即用给了大家多种多样的炒菜配方,祝大家都能炒出好菜,顺利毕业!由于个人水平有限,仅仅展示SE模块的使用,其原理请见原论文《Squeeze-and-Excitation Networks》代码见
Security Insights Additional navigation options master 1Branch 0Tags Code README MIT license Introduction This repository holds the official PyTorch implementation of paperComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks. With SEResNeXt50 as backbone, ComboLoss achieves state...