一般认为,如果D-W值在2附近(1.7~2.3之间),说明不存在自相关性,模型构建比较好,反之如果D-W值明显偏离2,说明模型具有自相关性,模型构建较差。从上表得到,本次分析的D-W值=0.438,明显偏离2,说明模型存在自相关性,模型构建较差。但是由于一般对于时间序列分析才会考虑DW值,本次分析数据并非时间序列...
一般来说,D-W检验其值在0到4之间。如果D-W检验值接近0,说明存在正自相关,如果接近4,说明存在负...
意味着不存在着共线性问题;并且D-W值在数字2附近,因而说明模型不存在自相关性,
D-W值是检验自变量之间是否存在自相关,上图中D-W>2表示问卷中的几个自变量无自相关性, 即方差分析表,ANOVA表的一个作用就是验证假设(A对B不产生影响)是否成立,一般只看sig.值即可,上图sig.<0.01,说明拒绝原假设,至少有一个对因变量产生显著性影响。 下一步看系数表,系数表则说明有几个自变量对因变量产生...
D-W值:D-W检验值,Durbin-Watson检验,是自相关性的一项检验方法。如果D-W值在2附近(1.7~2.3之间),则说明没有自相关性,模型构建良好。第一步:首先对模型整体情况进行分析 包括模型拟合情况(R²),是否通过F检验等。第二步:分析X的显著性 分析X的显著性(P值),如果呈现出显著...
它的值越接近1说明模型越好。调整的R平方比调整前R平方更准确一些,图中的最终调整R方为0.550,表示自变量一共可以解释因变量55%的变化(variance),另外,由于使用的是StepWise Linear Regression (SWLR),分析——回归——线性——“方法”选择“逐步”,所以模型1、2、3的R方逐渐增大,标准误差...
回归分析结果的解读主要包括R方、调整后的R方、方差显著性、t检验显著水平和D-W值。R方和调整后的R方的高值(通常90%以上)表明回归模型拟合效果良好。方差显著性小于0.05表明解释变量与被解释变量间存在显著线性关系。t检验显著水平同样小于0.05,指示统计学意义。D-W值用于判断数据是否存在自相关...
如图5所示,模型的D-W值(德宾-沃森值)为2.060,查阅德宾-沃森表得到,样本量n=198(采用200样本量D-W值),控制变量数量k=1,其下临界值LD=1.664、上临界值UD=1.684。 根据D-W值的判定规则,本例的D-W值符合“如果UD 图5:D-W检验 另外,再通过残差直方图看到,残差的分布趋近于正态曲线的分布。 图6:残差直...
D-W值:D-W检验值,Durbin-Watson检验,是自相关性的一项检验方法。如果D-W值在2附近(1.7~2.3之间),则说明没有自相关性,模型构建良好。第一步:首先对模型整体情况进行分析 包括模型拟合情况(R²),是否通过F检验等。第二步:分析X的显著性 分析X的显著性(P值),如果呈现出显著...