1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就...
1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就...
1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就...
1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就...
1.scikit-learn 朴素贝叶斯类库 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验...
其名字来源于贝叶斯定理和一个朴素的假设:所有的特征都相互条件独立于其他给定的响应变量。朴素贝叶斯是我们将要讨论到第一个生成模型。首先,我们将介绍贝叶斯定理。接着,我们将比较生成模型和判别模型。我们将讨论朴素贝叶斯和它的假设,并检验它的常用变体。最后,我们将使用scikit-learn类库来拟合一个模型。
本书通过14章内容,详细地介绍了一系列机器学习模型和scikit-learn的使用技巧。本书从机器学习的基础理论讲起,涵盖了简单线性回归、K-近邻算法、特征提取、多元线性回归、逻辑回归、朴素贝叶斯、非线性分类、决策树回归、随机森林、感知机、支持向量机、人工神经网络、K-均值算法、主成分分析等重要话题。
本书通过14章内容,详细地介绍了一系列机器学习模型和scikit-learn的使用技巧。本书从机器学习的基础理论讲起,涵盖了简单线性回归、K-近邻算法、特征提取、多元线性回归、逻辑回归、朴素贝叶斯、非线性分类、决策树回归、随机森林、感知机、支持向量机、人工神经网络、K-均值算法、主成分分析等重要话题。
本书内容共计14章,分别从机器学习基础、简单线性回归、基于K临近法的分类和回归分析、特征提取和预处理、简单回归和多重回归、线性回归和逻辑回归、朴素贝叶斯、决策树的非线性分类和回归、决策树、随机森林和其他方法、感知机、向量机、人工神经网络、K-means聚类等内容。